U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Gene expression analysis of Ncor1 muscle-specific knockout and PGC-1alpha muscle-specific transgenic skeletal muscle

(Submitter supplied) In the present study we have studied the mechanistic and functional aspects of NCoR1 function in mouse skeletal muscle. NCoR1 muscle-specific knockout mice exhibited an increased oxidative metabolism. Global gene expression analysis revealed a high overlap between the effects of NCoR1 deletion and peroxisome proliferator-activated receptor (PPAR) gamma coactivator 1alpha (PGC-1alpha) overexpression on oxidative metabolism in skeletal muscle. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6246
20 Samples
Download data: CEL
Series
Accession:
GSE40439
ID:
200040439
2.

The genomic context and co-recruitment of SP1 affect ERRα co-activation by PGC-1α in muscle cells

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL13112 GPL6246
11 Samples
Download data: CEL
Series
Accession:
GSE80522
ID:
200080522
3.

The genomic context and co-recruitment of SP1 affect ERRα co-activation by PGC-1α in muscle cells [array]

(Submitter supplied) The peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) coordinates the transcriptional network response to promote an improved endurance capacity in skeletal muscle, e.g. by co-activating the estrogen-related receptor α (ERRα) in the regulation of oxidative substrate metabolism. Despite a close functional relationship, the interaction between these two proteins has not been studied on a genomic level. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6246
9 Samples
Download data: CEL, TXT
Series
Accession:
GSE80521
ID:
200080521
4.

The genomic context and co-recruitment of SP1 affect ERRα co-activation by PGC-1α in muscle cells [ChIP-Seq]

(Submitter supplied) The peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) coordinates the transcriptional network response to promote an improved endurance capacity in skeletal muscle, e.g. by co-activating the estrogen-related receptor α (ERRα) in the regulation of oxidative substrate metabolism. Despite a close functional relationship, the interaction between these two proteins has not been studied on a genomic level. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13112
2 Samples
Download data: BED
Series
Accession:
GSE80520
ID:
200080520
5.

Peroxisome proliferator-activated receptor gamma coactivator-1alpha isoforms selectively regulate multiple splicing events on target genes.

(Submitter supplied) Endurance and resistance exercise training induce specific and profound changes in the skeletal muscle transcriptome. PGC-1a; coactivators are not only among the genes differentially induced by distinct training methods, but also participate in the ensuing signaling cascades that allow skeletal muscle to adapt to each type of exercise. While endurance training preferentially induces PGC-1a1 expression, resistance exercise activates the expression of PGC-1a2, a3, and a4. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6096
15 Samples
Download data: CEL
Series
Accession:
GSE75448
ID:
200075448
6.

Transcriptional network analysis in muscle reveals AP-1 as a partner of PGC-1α in the regulation of the hypoxic gene program

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL10740 GPL9250 GPL11002
20 Samples
Download data: CEL
Series
Accession:
GSE51191
ID:
200051191
7.

Transcriptional network analysis in muscle reveals AP-1 as a partner of PGC-1α in the regulation of the hypoxic gene program [microarray: kD_AP1]

(Submitter supplied) Skeletal muscle tissue shows an extraordinary cellular plasticity, but the underlying molecular mechanisms are still poorly understood. Here we use a combination of experimental and computational approaches to unravel the complex transcriptional network of muscle cell plasticity centered on the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a regulatory nexus in endurance training adaptation. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL10740
10 Samples
Download data: CEL, TXT
Series
Accession:
GSE51190
ID:
200051190
8.

Transcriptional network analysis in muscle reveals AP-1 as a partner of PGC-1α in the regulation of the hypoxic gene program [microarray: PGC1a_vs_GFP]

(Submitter supplied) Skeletal muscle tissue shows an extraordinary cellular plasticity, but the underlying molecular mechanisms are still poorly understood. Here we use a combination of experimental and computational approaches to unravel the complex transcriptional network of muscle cell plasticity centered on the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a regulatory nexus in endurance training adaptation. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL10740
6 Samples
Download data: CEL, TXT
Series
Accession:
GSE51189
ID:
200051189
9.

Transcriptional network analysis in muscle reveals AP-1 as a partner of PGC-1α in the regulation of the hypoxic gene program [ChIP-Seq]

(Submitter supplied) Skeletal muscle tissue shows an extraordinary cellular plasticity, but the underlying molecular mechanisms are still poorly understood. Here we use a combination of experimental and computational approaches to unravel the complex transcriptional network of muscle cell plasticity centered on the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a regulatory nexus in endurance training adaptation. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL9250 GPL11002
4 Samples
Download data: BED
Series
Accession:
GSE51178
ID:
200051178
10.

Pyruvate induces mitochondrial biogenesis by a PGC-1alpha independent mechanism

(Submitter supplied) The present study examines the impact of altering energy provision on mitochondrial biogenesis in muscle cells. C2C12 myoblasts were chronically treated with supraphysiological levels of sodium pyruvate for 72 hr. Treated cells exhibited increased mitochondrial protein expression, basal respiratory rate and maximal oxidative capacity. The increase in mitochondrial biogenesis was independent of increases in PGC-1alpha and PGC-1alpha mRNA expression. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Dataset:
GDS2265
Platform:
GPL1261
6 Samples
Download data
Series
Accession:
GSE5497
ID:
200005497
11.
Full record GDS2265

Pyruvate effect on muscle cells

Analysis of C2C12 myoblasts treated with supraphysiological levels of sodium pyruvate for 72 hours. Pyruvate increases mitochondrial biogenesis in muscle myoblasts. Results provide insight into the impact of altering energy provision on mitochondrial biogenesis in muscle cells.
Organism:
Mus musculus
Type:
Expression profiling by array, count, 2 agent sets
Platform:
GPL1261
Series:
GSE5497
6 Samples
Download data
DataSet
Accession:
GDS2265
ID:
2265
12.

Skeletal muscle PGC-1a mediates mitochondrial, but not metabolic, changes during calorie restriction.

(Submitter supplied) Calorie restriction (CR) is a dietary intervention that extends lifespan and healthspan in a variety of organisms. CR improves mitochondrial energy production, fuel oxidation and reactive oxygen species scavenging in skeletal muscle and other tissues, and these processes are thought to be critical to the benefits of CR. PGC-1a is a transcriptional coactivator that regulates mitochondrial function and is induced by CR. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
26 Samples
Download data: CEL
Series
Accession:
GSE34773
ID:
200034773
13.

The transcriptional coregulator PGC-1β controls mitochondrial function and anti-oxidant defense in skeletal muscles

(Submitter supplied) Transcriptional microarray analysis was conducted on gastrocnemius muscle of control and PGC-1β(i)skm-/- mice one week after the last tamoxifen administration using the Affymetrix Mouse Gene 1.0 ST.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6246
2 Samples
Download data: CEL, CHP
Series
Accession:
GSE73572
ID:
200073572
14.

mTOR pathway controls mitochondrial gene expression and respiration through the YY1/PGC-1alpha transcriptional complex

(Submitter supplied) Mitochondrial oxidative function is tightly controlled to maintain energy homeostasis in response to nutrient and hormonal signals. An important cellular component in the energy sensing response is the target of rapamycin (TOR) kinase pathway; however whether and how mTOR controls mitochondrial oxidative activity is unknown. Here, we show that mTOR kinase activity stimulates mitochondrial gene expression and oxidative function. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
12 Samples
Download data: CEL
Series
Accession:
GSE5332
ID:
200005332
15.

lipin 1beta overexpression in mouse liver

(Submitter supplied) Mutations in the gene encoding lipin 1 cause hepatic steatosis in fld mice, a genetic model of lipodystrophy. Lipin 1 appears to be highly involved in the control of fatty acid metabolism. Lipin 1 is most often located in the nucleus, but other studies suggest that lipin also has effects in the cytoplasm. However, the molecular function of lipin 1 is unclear. To evaluate the effects of activation of the lipin 1 system in liver, lipin 1beta was overexpressed in mouse liver using an adenoviral vector. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Dataset:
GDS2291
Platform:
GPL339
4 Samples
Download data
Series
Accession:
GSE5538
ID:
200005538
16.
Full record GDS2291

Lipin 1-beta overexpression effect on the liver

Analysis of livers of transgenics overexpressing lipin 1-beta, an alternative form of lipin 1 containing a 33 amino acid insertion. Mutations in the gene encoding lipin 1 cause hepatic steatosis in fld animals, a genetic model of lipodystrophy. Results provide insight into the function of lipin 1.
Organism:
Mus musculus
Type:
Expression profiling by array, count, 2 genotype/variation sets
Platform:
GPL339
Series:
GSE5538
4 Samples
Download data
DataSet
Accession:
GDS2291
ID:
2291
17.

Expression data from quadriceps muscle of WT and ERRgamma transgenic mice

(Submitter supplied) We show that the orphan nuclear receptor ERRg is expressed at high levels in type I muscle and when transgenically expressed in anaerobic type II muscles (ERRGO mice) or cultured cells, powerfully regulates VEGF expression, angiogenesis and vascular supply in absence of exercise. ERRGO mice show increased expression of genes promoting fat metabolism, mitochondrial respiration and type I fiber specification. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
6 Samples
Download data: CEL
Series
Accession:
GSE22086
ID:
200022086
18.

MicroRNA expression profiling of skeletal muscle from PPARalpha- and PPARbeta-overexpressing mice

(Submitter supplied) This experiment was conducted to identify target microRNAs of the peroxisome proliferator-activated receptor (PPAR) in skeletal muscle of transgenic mice that overexpressed PPARalpha or PPARbeta. We have recently demonstrated that skeletal muscle-specific PPARb transgenic (MCK-PPARb) mice exhibit increased exercise endurance, whereas MCK-PPARa mice have reduced exercise performance. Accordingly, we sought to determine whether PPARb and PPARa drive distinct programs involved in muscle fiber type determination. more...
Organism:
Mus musculus; Rattus norvegicus
Type:
Expression profiling by RT-PCR
Platforms:
GPL15350 GPL15351
24 Samples
Download data: SDS, TXT
Series
Accession:
GSE36498
ID:
200036498
19.

Orphan Nuclear Receptors ERRα/γ are competence factors for somatic cell reprogramming

(Submitter supplied) We report the expression profiles of the nuclear receptor family of transcription factors, known regulators of metabolism, during iPSC generation. Unique but overlapping expression patterns were found in iPSCs derived from adipose derived stem cells (ADSCs) and embryonic fibroblasts (human and mouse) that correlate with developmental transitions in the cell.
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL10558
6 Samples
Download data: TXT
Series
Accession:
GSE31704
ID:
200031704
20.

Effect of Pak4 ablation on transcriptome in liver of fasted mice

(Submitter supplied) Hepatic ketogenesis is crucial for energy homeostasis in a fast state, whereas defective ketogenesis is associated with various diseases. We explored the role of PAK4, an oncoprotein, in ketogenesis. To investigate the molecular basis, we carried out RNA-sequencing analysis using littermate WT and hepatocyte-specific Pak4 KO mice in fasted conditions.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24247
6 Samples
Download data: TXT
Series
Accession:
GSE214442
ID:
200214442
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=4|blobid=MCID_6664926abb845b085bdec219|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center