U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Transcription profiling of myotubes from patients with type 2 diabetes

(Submitter supplied) Microarray-based studies of skeletal muscle from patients with type 2 diabetes and high-risk individuals have demonstrated that insulin resistance and reduced mitochondrial biogenesis co-exist early in the pathogenesis of type 2 diabetes independent of hyperglycaemia and obesity. It is unknown whether reduced mitochondrial biogenesis or other transcriptional alterations co-exist with impaired insulin-responsiveness in primary human muscle cells from patients with type 2 diabetes. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Dataset:
GDS3681
Platform:
GPL8300
20 Samples
Download data: CEL
Series
Accession:
GSE12643
ID:
200012643
2.
Full record GDS3681

Type 2 diabetes: myotube

Analysis of myotube cell lines established from type 2 diabetes (T2D) subjects. Insulin resistance and reduced mitochondrial biogenesis coexist early in T2D pathogenesis independent of hyperglycemia and obesity. Results provide insight into the effect of T2D on developing skeletal muscle cells.
Organism:
Homo sapiens
Type:
Expression profiling by array, transformed count, 2 disease state sets
Platform:
GPL8300
Series:
GSE12643
20 Samples
Download data: CEL
DataSet
Accession:
GDS3681
ID:
3681
3.

Reduced expression of mitochondrial oxidative metabolism genes in skeletal muscle of women with PCOS

(Submitter supplied) Recently, abnormalities in mitochondrial oxidative phosphorylation (OXPHOS) have been implicated in the pathogenesis of skeletal muscle insulin resistance in type 2 diabetes. In the present study, we hypothesized that decreased expression of OXPHOS genes could be of similar importance for insulin resistance in the polycystic ovary syndrome (PCOS). Using the HG-U133 Plus 2.0 expression array from Affymetrix, we analyzed gene expression in skeletal muscle from obese women with PCOS (n=16) and age- and body mass index-matched control women (n=13) metabolically characterized by euglycemic-hyperinsulinemic clamp and indirect calorimetry. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Dataset:
GDS3104
Platform:
GPL570
29 Samples
Download data: CEL
Series
Accession:
GSE6798
ID:
200006798
4.
Full record GDS3104

Insulin-resistant polycystic ovary syndrome: muscle

Analysis of vastus lateralis muscles from women with insulin-resistant polycystic ovary syndrome (PCOS). Insulin resistance in skeletal muscles is a risk factor for the development of type 2 diabetes in women with PCOS. Results provide insight into the pathogenesis of insulin resistance in PCOS.
Organism:
Homo sapiens
Type:
Expression profiling by array, count, 2 disease state sets
Platform:
GPL570
Series:
GSE6798
29 Samples
Download data: CEL
DataSet
Accession:
GDS3104
ID:
3104
5.

Human skeletal muscle - type 2 diabetes and family history positive individuals - Mexican American

(Submitter supplied) Type 2 diabetes mellitus (DM) is characterized by insulin resistance and pancreatic beta-cell dysfunction. In high-risk subjects, the earliest detectable abnormality is insulin resistance in skeletal muscle. Impaired insulin-mediated signaling, gene expression, and glycogen synthesis, and accumulation of intramyocellular triglycerides have all been linked with insulin resistance, but no specific defect responsible for insulin resistance and DM has been identified in humans. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL80
20 Samples
Download data: CEL
Series
Accession:
GSE21340
ID:
200021340
6.

A PGC-1alpha-dependent decrease in mitochondrial oxidative metabolism in muscle of humans with inherited insulin resistance

(Submitter supplied) We used microarrays to assess gene expression profiling of 6 patients with a mutation (Arg1174Gln) in the tyrosine kinase domain of the insulin receptor gene (INSR) and 10 matched healthy controls
Organism:
Homo sapiens
Type:
Expression profiling by array
Dataset:
GDS4897
Platform:
GPL571
16 Samples
Download data: CEL
Series
Accession:
GSE36297
ID:
200036297
7.
Full record GDS4897

Skeletal muscle of patients with inherited insulin resistance

Analysis of muscle from patients with a mutation (Arg1174Gln) in the tyrosine kinase domain of the insulin receptor gene (INSR). This mutation is associated with inherited insulin resistance. Results provide insight into molecular mechanisms underlying insulin resistance in skeletal muscle.
Organism:
Homo sapiens
Type:
Expression profiling by array, count, 2 genotype/variation sets
Platform:
GPL571
Series:
GSE36297
16 Samples
Download data: CEL
DataSet
Accession:
GDS4897
ID:
4897
8.

Relationship between insulin sensitivity and gene expression in human skeletal muscle

(Submitter supplied) The aim of this study was therefore to investigate molecular mechanisms associated with insulin sensitivity in skeletal muscle by relating global skeletal muscle gene expression with a surrogate measure of insulin sensitivity, i.e. homeostatic model assessment of insulin resistance (HOMA-IR). To identify genes with skeletal muscle expression related to insulin sensitivity, we obtained muscle biopsies from 38 non-diabetic participants in study A. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platforms:
GPL7144 GPL4133
47 Samples
Download data: CEL, TXT
Series
Accession:
GSE161721
ID:
200161721
9.

Relationship between insulin sensitivity and gene expression in human skeletal muscle (Study B)

(Submitter supplied) We studied 9 healthy young non-diabetic men without any family history of diabetes. The mean age and body mass index (BMI) were 25.33 ± 0.33 years and 24.57 ± 0.62 kg/m2, respectively, and the mean 1/ homeostatic model assessment of insulin resistance (HOMA-IR) was 1.17 ± 0.12. We included baseline gene expression profile data (i.e. only before bed rest)
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL4133
9 Samples
Download data: TXT
Series
Accession:
GSE161720
ID:
200161720
10.

Insulin resistance induced by physical inactivity is associated with multiple transcriptional changes in skeletal muscle in young men

(Submitter supplied) Rationale: Physical inactivity is a risk factor for insulin resistance. We examined the effect of nine days of bed rest on basal and insulin stimulated expression of genes potentially involved in insulin action by applying hypothesis-generating microarray in parallel with candidate gene real-time PCR approaches in 20 healthy, young men. Furthermore, we investigated whether bed rest affected DNA methylation in the promoter region of the peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A) gene. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL6480
60 Samples
Download data: TXT
Series
Accession:
GSE24215
ID:
200024215
11.

FTO: gene expression and function in skeletal muscle

(Submitter supplied) We identified the target genes of FTO ("fat mass and obesity associated") in primary cultures of human skeletal muscle cells using adenoviral vectors expressing FTO or GFP and oligonucleotide microarrays.
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL1456
4 Samples
Download data: GPR
Series
Accession:
GSE22857
ID:
200022857
12.

Skeletal muscle biopsies before and after hyperinsulinemic-euglycemic clamp

(Submitter supplied) 6 lean humans were submitted to a 3 hours hyperinsulinemic-euglycemic clamp. Skeletal muscle biopsies were taken before and after the clamp. Set of arrays that are part of repeated experiments
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL6991
6 Samples
Download data
Series
Accession:
GSE11868
ID:
200011868
13.

C2C12 Myotubes in response to Palmitate

(Submitter supplied) To identify mediators of obesity-linked reductions in PGC-1, we tested the effects of cellular nutrients in C2C12 myotubes. While overnight exposure to high insulin, glucose, glucosamine, or amino acids had no effect, saturated fatty acids (FA) potently reduced PGC-1a and b mRNA expression. Keywords: Nutrient Effect
Organism:
Mus musculus
Type:
Expression profiling by array
Dataset:
GDS2648
Platform:
GPL8321
6 Samples
Download data: CEL
Series
Accession:
GSE6766
ID:
200006766
14.
Full record GDS2648

Palmitate effect on myoblast cell line

Analysis of myoblasts treated with the saturated fatty acid palmitate. Muscle expression of PPAR coactivator 1 (PGC-1) is reduced in models of obesity. Palmitate decreases the expression of PGC-1. Results provide insight into the molecular basis of the link between overnutrition, obesity, and PGC-1.
Organism:
Mus musculus
Type:
Expression profiling by array, count, 2 agent sets
Platform:
GPL8321
Series:
GSE6766
6 Samples
Download data: CEL
DataSet
Accession:
GDS2648
ID:
2648
15.

Gene expression profiling in skeletal muscle of PCOS after pioglitazone therapy

(Submitter supplied) Insulin resistance is a common metabolic abnormality in women with PCOS and leads to an elevated risk of type 2 diabetes. Studies have shown that thiazolidinediones (TZD) improve metabolic disturbances in PCOS patients. We hypothesized that the effect of TZD in PCOS is in part mediated by changes in the transcriptional profile of muscle favoring insulin sensitivity. Using Affymetrix microarrays, we examined the effect of pioglitazone (30 mg/day for 16 weeks) on gene expression in skeletal muscle of 10 obese women with PCOS metabolically characterized by a euglycemic-hyperinsulinemic clamp. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Datasets:
GDS4132 GDS4133
Platform:
GPL570
43 Samples
Download data: CEL
Series
Accession:
GSE8157
ID:
200008157
16.
Full record GDS4133

Obese women with polycystic ovary syndrome and obese, healthy women: skeletal muscle

Analysis of skeletal muscle from obese women with polycystic ovary syndrome (PCOS) and obese, healthy women. Results provide insight into whether pioglitazone ameliorates preexisting abnormalities in PCOS patients.
Organism:
Homo sapiens
Type:
Expression profiling by array, count, 2 disease state sets
Platform:
GPL570
Series:
GSE8157
23 Samples
Download data: CEL
17.
Full record GDS4132

PPAR-γ agonist pioglitazone effect on obese women with polycystic ovary syndrome: skeletal muscle

Analysis of skeletal muscle from obese women with polycystic ovary syndrome (PCOS) before and after thiazolidinedione (TZD) pioglitazone treatment. TZDs improve metabolic disturbances in PCOS patients. Results provide insight into the molecular mechanisms underlying the effect of TZD in PCOS.
Organism:
Homo sapiens
Type:
Expression profiling by array, count, 2 agent sets
Platform:
GPL570
Series:
GSE8157
20 Samples
Download data: CEL
18.

The transcriptional coregulator PGC-1β controls mitochondrial function and anti-oxidant defense in skeletal muscles

(Submitter supplied) Transcriptional microarray analysis was conducted on gastrocnemius muscle of control and PGC-1β(i)skm-/- mice one week after the last tamoxifen administration using the Affymetrix Mouse Gene 1.0 ST.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6246
2 Samples
Download data: CEL, CHP
Series
Accession:
GSE73572
ID:
200073572
19.

RNA-sequencing of human skeletal myocytes from healthy, obese, and type 2 diabetic subjects

(Submitter supplied) Skeletal muscle is one of the primary tissues involved in the development of type 2 diabetes (T2D). Obesity is tightly associated with T2D, making it challenging to isolate specific effects attributed to the disease alone. By using an in vitro myocyte model system we were able to isolate the inherent properties retained in myocytes originating from donor muscle precursor cells, without being confounded by varying extracellular factors present in the in vivo environment of the donor. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL11154 GPL16791
90 Samples
Download data: TXT
20.

RNA-sequencing of healthy human skeletal myocytes

(Submitter supplied) Skeletal myocytes are metabolically active and susceptible to insulin resistance, thus implicated in type 2 diabetes (T2D). This complex disease involves systemic metabolic changes and their elucidation at the systems level requires genome-wide data and biological networks. Genome-scale metabolic models (GEMs) provide a network-context to integrate high-throughput data. We generated myocyte-specific RNA-seq data and investigated their correlation with proteome data. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL16791 GPL11154
6 Samples
Download data: TXT
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=3|qty=3|blobid=MCID_673aa70a7d4f604c0b81ac0a|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center