U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Stress response in yeasts

(Submitter supplied) Transcriptome response of the yeasts C. glabrata and S. cerevisiae treated by an antifungal agent, benomyl Keywords: time course; stress response
Organism:
Nakaseomyces glabratus; Saccharomyces cerevisiae
Type:
Expression profiling by array
Platforms:
GPL6384 GPL6388
12 Samples
Download data: TXT
Series
Accession:
GSE10244
ID:
200010244
2.

Evolution of Reduced Co-Activator Dependence Led to Target Expansion of a Starvation Response Pathway

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Nakaseomyces glabratus; Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platforms:
GPL22622 GPL13821
62 Samples
Download data: WIG
Series
Accession:
GSE97801
ID:
200097801
3.

Evolution of Reduced Co-Activator Dependence Led to Target Expansion of a Starvation Response Pathway [Cgla RNA-seq]

(Submitter supplied) In S. cerevisiae, the phosphate starvation (PHO) responsive transcription factors Pho4 and Pho2 are jointly required for induction of phosphate response genes and survival in phosphate starvation conditions. In the related human commensal and pathogen C. glabrata, Pho4 is required but Pho2 is dispensable for survival in phosphate-limited conditions and is only partially required for inducing the phosphate response genes. more...
Organism:
Nakaseomyces glabratus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL22622
8 Samples
Download data: CSV
Series
Accession:
GSE97800
ID:
200097800
4.

Evolution of Reduced Co-Activator Dependence Led to Target Expansion of a Starvation Response Pathway [Scer RNA-seq]

(Submitter supplied) In S. cerevisiae, the phosphate starvation (PHO) responsive transcription factors Pho4 and Pho2 are jointly required for induction of phosphate response genes and survival in phosphate starvation conditions. In the related human commensal and pathogen C. glabrata, Pho4 is required but Pho2 is dispensable for survival in phosphate-limited conditions and is only partially required for inducing the phosphate response genes. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13821
36 Samples
Download data: CSV
Series
Accession:
GSE97799
ID:
200097799
5.

Evolution of Reduced Co-Activator Dependence Led to Target Expansion of a Starvation Response Pathway [Cgla ChIP-seq]

(Submitter supplied) In S. cerevisiae, the phosphate starvation (PHO) responsive transcription factors Pho4 and Pho2 are jointly required for induction of phosphate response genes and survival in phosphate starvation conditions. In the related human commensal and pathogen C. glabrata, Pho4 is required but Pho2 is dispensable for survival in phosphate-limited conditions and is only partially required for inducing the phosphate response genes. more...
Organism:
Nakaseomyces glabratus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL22622
9 Samples
Download data: WIG
Series
Accession:
GSE97798
ID:
200097798
6.

Evolution of Reduced Co-Activator Dependence Led to Target Expansion of a Starvation Response Pathway [Scer ChIP-seq]

(Submitter supplied) In S. cerevisiae, the phosphate starvation (PHO) responsive transcription factors Pho4 and Pho2 are jointly required for induction of phosphate response genes and survival in phosphate starvation conditions. In the related human commensal and pathogen C. glabrata, Pho4 is required but Pho2 is dispensable for survival in phosphate-limited conditions and is only partially required for inducing the phosphate response genes. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13821
9 Samples
Download data: WIG
Series
Accession:
GSE97797
ID:
200097797
7.

Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4 and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhitibor-stress for saccharomyces cerevisiae

(Submitter supplied) The yeast Saccharomyces cerevisiae is able to adapt and in situ detoxify lignocellulose derived inhibitors such as furfural and HMF. The length of lag phase for cell growth in response to the inhibitor challenge has been used to measure tolerance of strain performance. Mechanisms of yeast tolerance at the genome level remain unknown. Using systems biology approache, this study investigated comparative transcriptome profiling, metabolic profiling, cell growth response and gene regulatory interactions of yeast strains and selective gene deletion mutations in response to HMF challenges during the lag phase of growth. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Platform:
GPL10684
14 Samples
Download data: GPR
Series
Accession:
GSE22939
ID:
200022939
8.

Candida glabrata WT and mutants under iron starvation

(Submitter supplied) Transcriptional time series of Candida glabrata under iron starvation (SD medium without Fe). Wild type and deletion mutants of the iron-related transcription factors Aft1 and Sef1, as well as of the iron uptake transporter Ftr1 as a positive control.
Organism:
Nakaseomyces glabratus; Nakaseomyces glabratus CBS 138
Type:
Expression profiling by array
Platform:
GPL10713
60 Samples
Download data: TXT
Series
Accession:
GSE84816
ID:
200084816
9.

Inhibiting Fungal Multidrug Resistance by Disrupting an Activator-Mediator Interaction With the Small Molecule iKIX1

(Submitter supplied) Eukaryotic transcription activators stimulate the expression of specific sets of target genes through recruitment of co-activators such as the RNA polymerase II-interacting Mediator complex. We previously identified an activator-targeted ~85 amino acid three-helix bundle KIX domain in the human MED15 Mediator subunit that is structurally conserved in Gal11 Mediator subunits in fungi. The Gal11 KIX domain is engaged by pleiotropic drug resistance transcription factor (Pdr1) orthologues, key regulators of the multidrug resistance (MDR) pathway in S. more...
Organism:
Nakaseomyces glabratus; Saccharomyces cerevisiae
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL17342 GPL21066
24 Samples
Download data: TXT
Series
Accession:
GSE74361
ID:
200074361
10.

A new regulator in the crossroads of oxidative stress resistance and virulence in Candida glabrata: the transcription factor CgTog1

(Submitter supplied) The goals of this study are to compare C. glabrata transcriptome profiling (RNA-seq) upon exposure to hydrogen peroxide in order to assess the correspondent response. The role of the transcription factor Tog1 is clarified through comparison of the transcrptome profiles of WT and Tog1 mutant cells. mRNA profiles of WT and ∆tog1 were generated by deep sequencing, in duplicate, using Illumina HiSeq. The sequence reads that passed quality filters were analyzed with TopHat followed by HTSeq. more...
Organism:
Nakaseomyces glabratus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL26394
8 Samples
Download data: TXT
Series
Accession:
GSE148288
ID:
200148288
11.

Transcriptional effect of aft1 and aft2 mutation in iron depleted conditions

(Submitter supplied) The paralogous transcription factors Aft1p and Aft2p activate the expression of genes involved in iron metabolism under iron depleted conditions. Both are able to bind to the same DNA consensus sequence in vitro. We used DNA microarrays and loss of function mutant strains to better understand the respective roles of Aft1p and Aft2p in the regulation of gene expression Keywords: other
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Platform:
GPL205
6 Samples
Download data
Series
Accession:
GSE1763
ID:
200001763
12.

ChIP-Seq for Yrr1 protein on Saccharomyces cerevisiae cells carrying different YRR1 alleles in response to 4-nitroquinoline-N-oxide (4NQO)

(Submitter supplied) In this study, we constructed three isogenic strains of S96 yrr1Δ background (its native YRR1 gene was knocked out) carrying three different YRR1 alleles, YRR1_S96, YRR1_YJM789, YRR1_S96-I775E, respectively. We then conducted chromatin immuno-precipitation followed by high-throughput sequencing (ChIP-Seq) for Yrr1 protein on the three strains grown in Yeast Peptone Dextrose medium (YPD) and YPD + 4NQO.
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13821
24 Samples
Download data: XLSX
Series
Accession:
GSE74700
ID:
200074700
13.

RNA-Seq of Saccharomyces cerevisiae cells carrying different YRR1 alleles in response to 4-nitroquinoline-N-oxide (4NQO) and to glycerol as the sole carbon source

(Submitter supplied) In this study, we constructed three isogenic strains of S96 yrr1Δ background (its native YRR1 gene was knocked out) carrying three different YRR1 alleles, YRR1_S96, YRR1_YJM789 and YRR1_S96-I775E, respectively. We then conducted RNA deep sequencing (RNA-Seq) on the three strains grown in Yeast Peptone Dextrose medium (YPD), YPD + 4NQO and Yeast Peptone glycerol medium (YPglycerol).
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17143
18 Samples
Download data: XLSX
Series
Accession:
GSE74642
ID:
200074642
14.

Expression data for Saccharomyces cerevisiae oxidative stress response

(Submitter supplied) Oxidative stress is a harmful condition in a cell, tissue, or organ, caused by an imbalnace between reactive oxygen species and other oxidants and the capacity of antioxidant defense systems to remove them. The budding yeast S. cerevisiae has been the major eukaryotic model for studies of response to oxidative stress. We used microarrays to study the genome-wide temporal response of the yeast S. cerevisiae to oxidative stress induced by cumene hydroperoxide. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Dataset:
GDS3035
Platform:
GPL90
48 Samples
Download data: CEL
Series
Accession:
GSE7645
ID:
200007645
15.
Full record GDS3035

Saccharomyces cerevisiae response to oxidative stress: time course

Analysis of Saccharomyces cerevisiae cultures at various time points up to 120 minutes following treatment with the oxidant cumene hydroperoxide (CHP). Results provide insight into molecular mechanisms underlying the response of the yeast S. cerevisiae to oxidative stress.
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array, transformed count, 2 agent, 8 time sets
Platform:
GPL90
Series:
GSE7645
48 Samples
Download data: CEL
16.

BY4741 and BY4741(Δyrr1)transcriptional differences under vanillin stress

(Submitter supplied) BY4741(Δyrr1)exhibited better vanillin tolerance to vanillin than that of wildtype strain. To assess transcriptional differences between these two strains. Yrr1p is a transcriptional factors which activated genes related to multidrug resistance.The transcriptome of BY4741 and BY4741(Δyrr1)under vanillin stress or vanillin free conditions were conducted,respectively
Organism:
Saccharomyces cerevisiae BY4741
Type:
Expression profiling by high throughput sequencing
Platform:
GPL22674
8 Samples
Download data: TXT
Series
Accession:
GSE89854
ID:
200089854
17.

Nucleosome positioning for 4 yeast species

(Submitter supplied) We describe the genome-wide nucleosome profiles of four related yeast species. All species display the same global organization features first described in S. cerevisiae: a stereotypical nucleosome organization along genes, and the classification of promoters into these which contain or lack a pronounced Nucleosome Depleted region (NDR), with the latter displaying a more dynamic pattern of gene expression. more...
Organism:
Saccharomyces cerevisiae; Saccharomyces bayanus; Saccharomyces kudriavzevii; Nakaseomyces glabratus
Type:
Genome binding/occupancy profiling by high throughput sequencing
4 related Platforms
4 Samples
Download data: TXT
Series
Accession:
GSE23577
ID:
200023577
18.

HAL2 overexpression induces iron acquisition and enhanced salt resistance in bdf1Δ

(Submitter supplied) The strain bdf1Δ+HAL2 improved salt resistance of bdf1∆. To gain further insight into the mechanism of bdf1∆ salt sensitivity, DNA microarray analysis was performed to determine the reason for the salt sensitivity of bdf1∆ cells and the process of how HAL2 overexpression and HDA1 deletion improves salt resistance. Transcriptomic analysis under salt treatment (0.5 mol.L-1 NaCl for 45 min) was performed using four different strains: bdf1∆, W303, bdf1Δ+HAL2 and bdf1∆hda1∆. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Platform:
GPL17201
5 Samples
Download data: TXT
Series
Accession:
GSE75828
ID:
200075828
19.

Transcription Factor Substitution during the Evolution of Fungal Ribosome Regulation

(Submitter supplied) Coordinated ribosomal protein (RP) gene expression is crucial for cellular viability, but the transcriptional network controlling this regulon has only been well characterized in the yeast Saccharomyces cerevisiae. We have used whole-genome transcriptional and location profiling to establish that, in Candida albicans, the RP regulon is controlled by the Myb-domain protein Tbf1 working in conjunction with Cbf1. more...
Organism:
Candida albicans
Type:
Expression profiling by array; Genome binding/occupancy profiling by genome tiling array
Platforms:
GPL6475 GPL6474
16 Samples
Download data: TXT
Series
Accession:
GSE10622
ID:
200010622
20.

Transcription Factor Substitution during the Evolution of Fungal Ribosome Regulation_expression profiling

(Submitter supplied) Coordinated ribosomal protein (RP) gene expression is crucial for cellular viability, but the transcriptional network controlling this regulon has only been well characterized in the yeast Saccharomyces cerevisiae. We have used whole-genome transcriptional and location profiling to establish that, in Candida albicans, the RP regulon is controlled by the Myb-domain protein Tbf1 working in conjunction with Cbf1. more...
Organism:
Candida albicans
Type:
Expression profiling by array
Platform:
GPL6475
12 Samples
Download data: TXT
Series
Accession:
GSE10499
ID:
200010499
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=26|qty=8|blobid=MCID_67320c6f4322b4744264a20d|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center