Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase- MedGen UID:
- 82777
- •Concept ID:
- C0268151
- •
- Disease or Syndrome
The term "galactosemia" refers to disorders of galactose metabolism that include classic galactosemia, clinical variant galactosemia, and biochemical variant galactosemia (not covered in this chapter). This GeneReview focuses on: Classic galactosemia, which can result in life-threatening complications including feeding problems, failure to thrive, hepatocellular damage, bleeding, and E coli sepsis in untreated infants. If a lactose-restricted diet is provided during the first ten days of life, the neonatal signs usually quickly resolve and the complications of liver failure, sepsis, and neonatal death are prevented; however, despite adequate treatment from an early age, children with classic galactosemia remain at increased risk for developmental delays, speech problems (termed childhood apraxia of speech and dysarthria), and abnormalities of motor function. Almost all females with classic galactosemia manifest hypergonadatropic hypogonadism or premature ovarian insufficiency (POI). Clinical variant galactosemia, which can result in life-threatening complications including feeding problems, failure to thrive, hepatocellular damage including cirrhosis, and bleeding in untreated infants. This is exemplified by the disease that occurs in African Americans and native Africans in South Africa. Persons with clinical variant galactosemia may be missed with newborn screening as the hypergalactosemia is not as marked as in classic galactosemia and breath testing is normal. If a lactose-restricted diet is provided during the first ten days of life, the severe acute neonatal complications are usually prevented. African Americans with clinical variant galactosemia and adequate early treatment do not appear to be at risk for long-term complications, including POI.
Congenital malabsorptive diarrhea 4- MedGen UID:
- 372151
- •Concept ID:
- C1835888
- •
- Disease or Syndrome
An exceedingly rare genetic gastroenterological disease characterized by severe malabsorption diarrhea and a lack of intestinal enteroendocrine cells. Within the first weeks of life, patients present with vomiting, dehydration and severe diarrhea unresponsive to various nutrients and formulas and require home parenteral nutrition. The syndrome is also associated with type 1 diabetes during childhood. This phenotype is caused by loss-of-function mutations in the NEUROG3 gene, coding for neurogenin 3, a protein implicated in endocrine enteric and pancreatic cell development.
Pseudohypoaldosteronism type 2B- MedGen UID:
- 374457
- •Concept ID:
- C1840390
- •
- Disease or Syndrome
Pseudohypoaldosteronism type II (PHAII) is characterized by hyperkalemia despite normal glomerular filtration rate (GFR) and frequently by hypertension. Other associated findings in both children and adults include hyperchloremia, metabolic acidosis, and suppressed plasma renin levels. Aldosterone levels are variable, but are relatively low given the degree of hyperkalemia (elevated serum potassium is a potent stimulus for aldosterone secretion). Hypercalciuria is well described.
Pseudohypoaldosteronism type 2C- MedGen UID:
- 327089
- •Concept ID:
- C1840391
- •
- Disease or Syndrome
Pseudohypoaldosteronism type II (PHAII) is characterized by hyperkalemia despite normal glomerular filtration rate (GFR) and frequently by hypertension. Other associated findings in both children and adults include hyperchloremia, metabolic acidosis, and suppressed plasma renin levels. Aldosterone levels are variable, but are relatively low given the degree of hyperkalemia (elevated serum potassium is a potent stimulus for aldosterone secretion). Hypercalciuria is well described.
Pseudohypoaldosteronism type 2D- MedGen UID:
- 483335
- •Concept ID:
- C3469605
- •
- Disease or Syndrome
Pseudohypoaldosteronism type II (PHAII) is characterized by hyperkalemia despite normal glomerular filtration rate (GFR) and frequently by hypertension. Other associated findings in both children and adults include hyperchloremia, metabolic acidosis, and suppressed plasma renin levels. Aldosterone levels are variable, but are relatively low given the degree of hyperkalemia (elevated serum potassium is a potent stimulus for aldosterone secretion). Hypercalciuria is well described.
Pseudohypoaldosteronism type 2E- MedGen UID:
- 483336
- •Concept ID:
- C3469606
- •
- Disease or Syndrome
Pseudohypoaldosteronism type II (PHAII) is characterized by hyperkalemia despite normal glomerular filtration rate (GFR) and frequently by hypertension. Other associated findings in both children and adults include hyperchloremia, metabolic acidosis, and suppressed plasma renin levels. Aldosterone levels are variable, but are relatively low given the degree of hyperkalemia (elevated serum potassium is a potent stimulus for aldosterone secretion). Hypercalciuria is well described.
Fanconi renotubular syndrome 5- MedGen UID:
- 1711127
- •Concept ID:
- C5394473
- •
- Disease or Syndrome
Fanconi renotubular syndrome-5 (FRTS5) is a mitochondrial disorder characterized by proximal renotubular dysfunction from birth, followed by progressive kidney disease and pulmonary fibrosis. It occurs only in individuals of Acadian descent (Crocker et al., 1997 and Hartmannova et al., 2016).
For a discussion of genetic heterogeneity of Fanconi renotubular syndrome, see FRTS1 (134600).
Renal tubular acidosis, distal, 4, with hemolytic anemia- MedGen UID:
- 1771439
- •Concept ID:
- C5436235
- •
- Disease or Syndrome
Individuals with hereditary distal renal tubular acidosis (dRTA) typically present in infancy with failure to thrive, although later presentations can occur, especially in individuals with autosomal dominant SLC4A1-dRTA. Initial clinical manifestations can also include emesis, polyuria, polydipsia, constipation, diarrhea, decreased appetite, and episodes of dehydration. Electrolyte manifestations include hyperchloremic non-anion gap metabolic acidosis and hypokalemia. Renal complications of dRTA include nephrocalcinosis, nephrolithiasis, medullary cysts, and impaired renal function. Additional manifestations include bone demineralization (rickets, osteomalacia), growth deficiency, sensorineural hearing loss (in ATP6V0A4-, ATP6V1B1-, and FOXI1-dRTA), and hereditary hemolytic anemia (in some individuals with SLC4A1-dRTA).