Warning: The NCBI web site requires JavaScript to function. more...
An official website of the United States government
The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.
The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.
Paragangliomas 1
Hereditary paraganglioma-pheochromocytoma (PGL/PCC) syndromes are characterized by paragangliomas (tumors that arise from neuroendocrine tissues distributed along the paravertebral axis from the base of the skull to the pelvis) and pheochromocytomas (paragangliomas that are confined to the adrenal medulla). Sympathetic paragangliomas cause catecholamine excess; parasympathetic paragangliomas are most often nonsecretory. Extra-adrenal parasympathetic paragangliomas are located predominantly in the skull base and neck (referred to as head and neck PGL [HNPGL]) and sometimes in the upper mediastinum; approximately 95% of such tumors are nonsecretory. In contrast, sympathetic extra-adrenal paragangliomas are generally confined to the lower mediastinum, abdomen, and pelvis, and are typically secretory. Pheochromocytomas, which arise from the adrenal medulla, typically lead to catecholamine excess. Symptoms of PGL/PCC result from either mass effects or catecholamine hypersecretion (e.g., sustained or paroxysmal elevations in blood pressure, headache, episodic profuse sweating, forceful palpitations, pallor, and apprehension or anxiety). The risk for developing metastatic disease is greater for extra-adrenal sympathetic paragangliomas than for pheochromocytomas. [from GeneReviews]
Familial adenomatous polyposis 1
APC-associated polyposis conditions include (classic or attenuated) familial adenomatous polyposis (FAP) and gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS). FAP is a colorectal cancer (CRC) predisposition syndrome that can manifest in either classic or attenuated form. Classic FAP is characterized by hundreds to thousands of adenomatous colonic polyps, beginning on average at age 16 years (range 7-36 years). For those with the classic form of FAP, 95% of individuals have polyps by age 35 years; CRC is inevitable without colectomy. The mean age of CRC diagnosis in untreated individuals is 39 years (range 34-43 years). The attenuated form is characterized by multiple colonic polyps (average of 30), more proximally located polyps, and a diagnosis of CRC at a later age than in classic FAP. For those with an attenuated form, there is a 70% lifetime risk of CRC and the mean age of diagnosis is 50-55 years. Extracolonic manifestations are variably present and include polyps of the stomach and duodenum, osteomas, dental abnormalities, congenital hypertrophy of the retinal pigment epithelium (CHRPE), benign cutaneous lesions, desmoid tumors, adrenal masses, and other associated cancers. GAPPS is characterized by proximal gastric polyposis, increased risk of gastric adenocarcinoma, and no duodenal or colonic involvement in most individuals reported. [from GeneReviews]
Pheochromocytoma
Paragangliomas 4
Paragangliomas 2
Paragangliomas 3
Chondrodysplasia punctata 2 X-linked dominant
The findings in X-linked chondrodysplasia punctata 2 (CDPX2) range from fetal demise with multiple malformations and severe growth retardation to much milder manifestations, including females with no recognizable physical abnormalities. At least 95% of live-born individuals with CDPX2 are female. Characteristic features include growth deficiency; distinctive craniofacial appearance; chondrodysplasia punctata (stippling of the epiphyses of the long bones, vertebrae, trachea, and distal ends of the ribs); often asymmetric rhizomelic shortening of limbs; scoliosis; linear or blotchy scaling ichthyosis in the newborn; later appearance of linear or whorled atrophic patches involving hair follicles (follicular atrophoderma); coarse hair with scarring alopecia; and cataracts. [from GeneReviews]
Upshaw-Schulman syndrome
Hereditary thrombotic thrombocytopenic purpura (TTP), also known as Upshaw-Schulman syndrome (USS), is a rare autosomal recessive thrombotic microangiopathy (TMA). Clinically, acute phases of TTP are defined by microangiopathic mechanical hemolytic anemia, severe thrombocytopenia, and visceral ischemia. Hereditary TTP makes up 5% of TTP cases and is caused mostly by biallelic mutation in the ADAMTS13 gene, or in very rare cases, by monoallelic ADAMTS13 mutation associated with a cluster of single-nucleotide polymorphisms (SNPs); most cases of all TTP (95%) are acquired via an autoimmune mechanism (see 188030). Hereditary TTP is more frequent among child-onset TTP compared with adult-onset TTP, and its clinical presentation is significantly different as a function of its age of onset. Child-onset TTP usually starts in the neonatal period with hematological features and severe jaundice. In contrast, almost all cases of adult-onset hereditary TTP are unmasked during the first pregnancy of a woman whose disease was silent during childhood (summary by Joly et al., 2018). [from OMIM]
Paragangliomas 5
Autosomal recessive nonsyndromic hearing loss 15
This form of autosomal recessive deafness is sensorineural and nonsyndromic, and shows prelingual onset (summary by Charizopoulou et al., 2011). [from OMIM]
Thyroid cancer, nonmedullary, 1
Nonmedullary thyroid cancer (NMTC) comprises thyroid cancers of follicular cell origin and accounts for more than 95% of all thyroid cancer cases. The remaining cancers originate from parafollicular cells (medullary thyroid cancer, MTC; 155240). NMTC is classified into 4 groups: papillary, follicular (188470), Hurthle cell (607464), and anaplastic. Approximately 5% of NMTC is hereditary, occurring as a component of a familial cancer syndrome (e.g., familial adenomatous polyposis, 175100; Carney complex, 160980) or as a primary feature (familial NMTC or FNMTC). Papillary thyroid cancer (PTC) is the most common histologic subtype of FNMTC, accounting for approximately 85% of cases (summary by Vriens et al., 2009). PTC is characterized by distinctive nuclear alterations including pseudoinclusions, grooves, and chromatin clearing. PTCs smaller than 1 cm are referred to as papillary microcarcinomas. These tumors have been identified in up to 35% of individuals at autopsy, suggesting that they may be extremely common although rarely clinically relevant. PTC can also be multifocal but is typically slow-growing with a tendency to spread to lymph nodes and usually has an excellent prognosis (summary by Bonora et al., 2010). Genetic Heterogeneity of Susceptibility to Nonmedullary Thyroid Cancer Other susceptibilities to nonmedullary thyroid cancer include NMTC2 (188470), caused by mutation in the SRGAP1 gene (606523); NMTC3 (606240), mapped to chromosome 2q21; NMTC4 (616534), caused by mutation in the FOXE1 gene (602617); and NMTC5 (616535), caused by mutation in the HABP2 gene (603924). A susceptibility locus for familial nonmedullary thyroid carcinoma with or without cell oxyphilia (TCO; 603386) has been mapped to chromosome 19p. [from OMIM]
Desmoid disease, hereditary
Hyperparathyroidism 2 with jaw tumors
The spectrum of CDC73-related disorders includes the following phenotypes: Hyperparathyroidism-jaw tumor (HPT-JT) syndrome. Primary hyperparathyroidism, the main finding of HPT-JT syndrome, occurs in up to 95% of affected individuals; onset is typically in late adolescence or early adulthood. HPT-JT-associated primary hyperparathyroidism is usually caused by a single parathyroid adenoma. In approximately 10%-15% of individuals, primary hyperparathyroidism is caused by parathyroid carcinoma. Ossifying fibromas of the mandible or maxilla, also known as cementifying fibromas and cemento-ossifying fibromas, occur in 30%-40% of individuals with HPT-JT syndrome. Although benign, these tumors can be locally aggressive and may continue to enlarge if not treated. Approximately 20% of individuals with HPT-JT syndrome have kidney lesions, most commonly cysts; renal hamartomas and (more rarely) Wilms tumor have also been reported. Benign and malignant uterine tumors appear to be common in women with HPT-JT syndrome. Parathyroid carcinoma. Most parathyroid carcinomas are functional, resulting in hyperparathyroidism and a high serum calcium level; however, nonfunctioning parathyroid carcinomas are also rarely described in individuals with a CDC73-related disorder. A germline CDC73 pathogenic variant has been identified in 20%-29% of individuals with apparently sporadic parathyroid carcinoma. Familial isolated hyperparathyroidism (FIHP). FIHP is characterized by primary hyperparathyroidism without other associated syndromic features. Individuals with CDC73-related FIHP tend to have a more severe clinical presentation and younger age of onset than individuals with FIHP in whom a CDC73 pathogenic variant has not been identified. [from GeneReviews]
Hyperparathyroidism 1
Thyroid cancer, nonmedullary, 2
Nonmedullary thyroid cancer (NMTC) comprises thyroid cancers of follicular cell origin and accounts for more than 95% of all thyroid cancer cases. The remaining cancers originate from parafollicular cells (medullary thyroid cancer, MTC; 155240). NMTC is classified into 4 groups: papillary, follicular, Hurthle cell (607464), and anaplastic. Approximately 5% of NMTC is hereditary, occurring as a minor component of a familial cancer syndrome (e.g., familial adenomatous polyposis, 175100, Carney complex, 160980) or as a primary feature (familial NMTC or FNMTC). Papillary thyroid cancer (PTC) is the most common histologic subtype of FNMTC, accounting for approximately 85% of cases (summary by Vriens et al., 2009). Follicular thyroid cancer (FTC) accounts for approximately 15% of NMTC and is defined by invasive features that result in infiltration of blood vessels and/or full penetration of the tumor capsule, in the absence of the nuclear alterations that characterize papillary carcinoma. FTC is rarely multifocal and usually does not metastasize to the regional lymph nodes but tends to spread via the bloodstream to the lung and bones. An important histologic variant of FTC is the oncocytic (Hurthle cell, oxyphilic) follicular carcinoma composed of eosinophilic cells replete with mitochondria (summary by Bonora et al., 2010). For a general phenotypic description and a discussion of genetic heterogeneity of NMTC, see NMTC1 (188550). [from OMIM]
Hereditary pheochromocytoma-paraganglioma
Gastric adenocarcinoma and proximal polyposis of the stomach
Parathyroid carcinoma
Immunodeficiency 95
Immunodeficiency-95 (IMD95) is an autosomal recessive disorder characterized predominantly by the onset of recurrent and severe viral respiratory infections in infancy or early childhood. Affected individuals often require hospitalization or respiratory support for these infections, which include human rhinovirus (HRV) and RSV. Immunologic workup is usually normal, although some mild abnormalities may be observed. The disorder results from a loss of ability of the innate immune system to sense viral genetic information, which causes a lack of interferon (IFN) production, poor response to viral and immunologic stimulation, and failure to control viral replication (summary by Lamborn et al., 2017, Asgari et al., 2017, Cananzi et al., 2021). [from OMIM]
3MC syndrome 1
The term '3MC syndrome' encompasses 4 rare autosomal recessive disorders that were previously designated the Carnevale, Mingarelli, Malpuech, and Michels syndromes, respectively. The main features of these syndromes are facial dysmorphism that includes hypertelorism, blepharophimosis, blepharoptosis, and highly arched eyebrows, which are present in 70 to 95% of cases. Cleft lip and palate, postnatal growth deficiency, cognitive impairment, and hearing loss are also consistent findings, occurring in 40 to 68% of cases. Craniosynostosis, radioulnar synostosis, and genital and vesicorenal anomalies occur in 20 to 30% of cases. Rare features include anterior chamber defects, cardiac anomalies, caudal appendage, umbilical hernia (omphalocele), and diastasis recti (summary by Rooryck et al., 2011). Genetic Heterogeneity of 3MC Syndrome Also see 3MC syndrome-2 (3MC2; 265050), caused by mutation in the COLEC11 gene (612502), and 3MC syndrome-3 (3MC3; 248340), caused by mutation in the COLEC1 gene (607620). [from OMIM]
Filter your results:
Your browsing activity is empty.
Activity recording is turned off.
Turn recording back on