U.S. flag

An official website of the United States government

Format
Items per page

Send to:

Choose Destination

Search results

Items: 1 to 20 of 41

  • The following terms were not found in MedGen: comsmall, Cyrillic.
1.

Cornelia de Lange syndrome 1

Cornelia de Lange syndrome (CdLS) encompasses a spectrum of findings from mild to severe. Severe (classic) CdLS is characterized by distinctive facial features, growth restriction (prenatal onset; <5th centile throughout life), hypertrichosis, and upper-limb reduction defects that range from subtle phalangeal abnormalities to oligodactyly (missing digits). Craniofacial features include synophrys, highly arched and/or thick eyebrows, long eyelashes, short nasal bridge with anteverted nares, small widely spaced teeth, and microcephaly. Individuals with a milder phenotype have less severe growth, cognitive, and limb involvement, but often have facial features consistent with CdLS. Across the CdLS spectrum IQ ranges from below 30 to 102 (mean: 53). Many individuals demonstrate autistic and self-destructive tendencies. Other frequent findings include cardiac septal defects, gastrointestinal dysfunction, hearing loss, myopia, and cryptorchidism or hypoplastic genitalia. [from GeneReviews]

MedGen UID:
1645760
Concept ID:
C4551851
Disease or Syndrome
2.

Hypogonadotropic hypogonadism 1 with or without anosmia

Isolated gonadotropin-releasing hormone (GnRH) deficiency (IGD) is characterized by inappropriately low serum concentrations of the gonadotropins LH (luteinizing hormone) and FSH (follicle-stimulating hormone) in the presence of low circulating concentrations of sex steroids. IGD is associated with a normal sense of smell (normosmic IGD) in approximately 40% of affected individuals and an impaired sense of smell (Kallmann syndrome) in approximately 60%. IGD can first become apparent in infancy, adolescence, or adulthood. Infant boys with congenital IGD often have micropenis and cryptorchidism. Adolescents and adults with IGD have clinical evidence of hypogonadism and incomplete sexual maturation on physical examination. Adult males with IGD tend to have prepubertal testicular volume (i.e., <4 mL), absence of secondary sexual features (e.g., facial and axillary hair growth, deepening of the voice), decreased muscle mass, diminished libido, erectile dysfunction, and infertility. Adult females have little or no breast development and primary amenorrhea. Although skeletal maturation is delayed, the rate of linear growth is usually normal except for the absence of a distinct pubertal growth spurt. [from GeneReviews]

MedGen UID:
295872
Concept ID:
C1563719
Disease or Syndrome
3.

Encephalopathy due to GLUT1 deficiency

The phenotypic spectrum of glucose transporter type 1 deficiency syndrome (Glut1 DS) is now known to be a continuum that includes the classic phenotype as well as paroxysmal exercise-induced dyskinesia and epilepsy (previously known as dystonia 18 [DYT18]) and paroxysmal choreoathetosis with spasticity (previously known as dystonia 9 [DYT9]), atypical childhood absence epilepsy, myoclonic astatic epilepsy, and paroxysmal non-epileptic findings including intermittent ataxia, choreoathetosis, dystonia, and alternating hemiplegia. The classic phenotype is characterized by infantile-onset seizures, delayed neurologic development, acquired microcephaly, and complex movement disorders. Seizures in classic early-onset Glut1 DS begin before age six months. Several seizure types occur: generalized tonic or clonic, focal, myoclonic, atypical absence, atonic, and unclassified. In some infants, apneic episodes and abnormal episodic eye-head movements similar to opsoclonus may precede the onset of seizures. The frequency, severity, and type of seizures vary among affected individuals and are not related to disease severity. Cognitive impairment, ranging from learning disabilities to severe intellectual disability, is typical. The complex movement disorder, characterized by ataxia, dystonia, and chorea, may occur in any combination and may be continuous, paroxysmal, or continual with fluctuations in severity influenced by environmental factors such as fasting or with infectious stress. Symptoms often improve substantially when a ketogenic diet is started. [from GeneReviews]

MedGen UID:
1645412
Concept ID:
C4551966
Disease or Syndrome
4.

ALDH18A1-related de Barsy syndrome

De Barsy syndrome, or autosomal recessive cutis laxa type III (ARCL3), is characterized by cutis laxa, a progeria-like appearance, and ophthalmologic abnormalities (summary by Kivuva et al., 2008). For a phenotypic description and a discussion of genetic heterogeneity of autosomal recessive cutis laxa, see 219100. Genetic Heterogeneity of de Barsy Syndrome Also see ARCL3B (614438), caused by mutation in the PYCR1 gene (179035) on chromosome 17q25. [from OMIM]

MedGen UID:
1720006
Concept ID:
C5234852
Disease or Syndrome
5.

Long QT syndrome 1

Long QT syndrome (LQTS) is a cardiac electrophysiologic disorder, characterized by QT prolongation and T-wave abnormalities on the EKG that are associated with tachyarrhythmias, typically the ventricular tachycardia torsade de pointes (TdP). TdP is usually self-terminating, thus causing a syncopal event, the most common symptom in individuals with LQTS. Such cardiac events typically occur during exercise and emotional stress, less frequently during sleep, and usually without warning. In some instances, TdP degenerates to ventricular fibrillation and causes aborted cardiac arrest (if the individual is defibrillated) or sudden death. Approximately 50% of untreated individuals with a pathogenic variant in one of the genes associated with LQTS have symptoms, usually one to a few syncopal events. While cardiac events may occur from infancy through middle age, they are most common from the preteen years through the 20s. Some types of LQTS are associated with a phenotype extending beyond cardiac arrhythmia. In addition to the prolonged QT interval, associations include muscle weakness and facial dysmorphism in Andersen-Tawil syndrome (LQTS type 7); hand/foot, facial, and neurodevelopmental features in Timothy syndrome (LQTS type 8); and profound sensorineural hearing loss in Jervell and Lange-Nielson syndrome. [from GeneReviews]

MedGen UID:
1641146
Concept ID:
C4551647
Disease or Syndrome
6.

PYCR1-related de Barsy syndrome

De Barsy syndrome, also known as autosomal recessive cutis laxa type III (ARCL3), is a rare autosomal recessive disorder characterized by an aged appearance with distinctive facial features, sparse hair, ophthalmologic abnormalities, intrauterine growth retardation (IUGR), and cutis laxa (summary by Lin et al., 2011). For a phenotypic description and a discussion of genetic heterogeneity of de Barsy syndrome, see 219150. For a phenotypic description and a discussion of genetic heterogeneity of autosomal recessive cutis laxa, see 219200. [from OMIM]

MedGen UID:
482429
Concept ID:
C3280799
Disease or Syndrome
7.

Septo-optic dysplasia sequence

Septooptic dysplasia is a clinically heterogeneous disorder loosely defined by any combination of optic nerve hypoplasia, pituitary gland hypoplasia, and midline abnormalities of the brain, including absence of the corpus callosum and septum pellucidum (Dattani et al., 1998). The diagnosis of this rare congenital anomaly is made when 2 or more features of the classic triad are present. Approximately 30% of patients have complete manifestations, 62% display hypopituitarism, and 60% have an absent septum pellucidum. The disorder is equally prevalent in males and females and is more common in infants born to younger mothers, with a reported incidence of 1 in 10,000 live births (summary by Webb and Dattani, 2010). Also see 516020.0012 for a form of septooptic dysplasia associated with cardiomyopathy and exercise intolerance. [from OMIM]

MedGen UID:
90926
Concept ID:
C0338503
Disease or Syndrome
8.

Age related macular degeneration 1

Age-related macular degeneration (ARMD) is a progressive degeneration of photoreceptors and underlying retinal pigment epithelium (RPE) cells in the macula region of the retina. It is a highly prevalent disease and a major cause of blindness in the Western world. Drusen, pale excrescences of variable size, and other deposits accumulate below the RPE on the Bruch membrane; clinical and histopathologic investigations have shown that these extracellular deposits are the hallmark of early ARMD. As ARMD advances, areas of geographic atrophy of the RPE can cause visual loss, or choroidal neovascularization can occur to cause wet, or exudative, ARMD with accompanying central visual loss (summary by De et al., 2007). Genetic Heterogeneity of Age-Related Macular Degeneration ARMD2 (153800) is associated with mutation in the ABCR gene (601691) on chromosome 1p, and ARMD3 (608895) is caused by mutation in the FBLN5 gene (604580) on chromosome 14q31. Up to 50% of the attributable risk of age-related macular degeneration (ARMD4; 610698) appears to be explained by a polymorphism in the CFH gene (134370.0008). ARMD5 (613761) and ARMD6 (613757) are associated with mutation in the ERCC6 (609413) and RAX2 (610362) genes, respectively. ARMD7 (610149) and ARMD8 (613778), which both represent susceptibility linked to chromosome 10q26, are associated with single-nucleotide polymorphisms in the HTRA1 (602194) and ARMS2 (611313) genes, respectively. ARMD9 (611378) is associated with single-nucleotide polymorphisms in the C3 gene (120700). ARMD10 (611488) maps to chromosome 9q32 and may be associated with a polymorphism in the TLR4 gene (603030). ARMD11 (611953) is association with variation in the CST3 gene (604312); ARMD12 (613784) with variation in the CX3CR1 gene (601470); and ARMD13 (615439) with variation in the CFI gene (217030). ARMD14 (615489) is associated with variation in or near the C2 (613927) and CFB (138470) genes on chromosome 6p21. ARMD15 (615591) is associated with variation in the C9 gene (120940). There is evidence for a form of ARMD caused by mutation in the mitochondrial gene MTTL1 (590050). A haplotype carrying deletion of the complement factor H-related genes CFHR1 (134371) and CFHR3 (605336) is also associated with reduced risk of ARMD. Lotery and Trump (2007) reviewed the molecular biology of age-related macular degeneration and tabulated the genes associated with ARMD, including those with only positive findings versus genes for which conflicting results have been found. [from OMIM]

MedGen UID:
400475
Concept ID:
C1864205
Disease or Syndrome
9.

Jervell and Lange-Nielsen syndrome 1

Jervell and Lange-Nielsen syndrome (JLNS) is characterized by congenital profound bilateral sensorineural hearing loss and long QTc, usually >500 msec. Prolongation of the QTc interval is associated with tachyarrhythmias, including ventricular tachycardia, episodes of torsade de pointes ventricular tachycardia, and ventricular fibrillation, which may culminate in syncope or sudden death. Iron-deficient anemia and elevated levels of gastrin are also frequent features of JLNS. The classic presentation of JLNS is a deaf child who experiences syncopal episodes during periods of stress, exercise, or fright. Fifty percent of individuals with JLNS had cardiac events before age three years. More than half of untreated children with JLNS die before age 15 years. [from GeneReviews]

MedGen UID:
1646925
Concept ID:
C4551509
Disease or Syndrome
10.

Holoprosencephaly 1

Holoprosencephaly (HPE) is the most common structural malformation of the human forebrain and occurs after failed or abbreviated midline cleavage of the developing brain during the third and fourth weeks of gestation. HPE occurs in up to 1 in 250 gestations, but only 1 in 8,000 live births (Lacbawan et al., 2009). Classically, 3 degrees of severity defined by the extent of brain malformation have been described. In the most severe form, 'alobar HPE,' there is a single ventricle and no interhemispheric fissure. The olfactory bulbs and tracts and the corpus callosum are typically absent. In 'semilobar HPE,' the most common type of HPE in neonates who survive, there is partial cortical separation with rudimentary cerebral hemispheres and a single ventricle. In 'lobar HPE,' the ventricles are separated, but there is incomplete frontal cortical separation (Corsello et al., 1990). An additional milder form, called 'middle interhemispheric variant' (MIHV) has also been delineated, in which the posterior frontal and parietal lobes are incompletely separated and the corpus callosum may be hypoplastic (Lacbawan et al., 2009). Finally, microforms of HPE include a single maxillary median incisor or hypotelorism without the typical brain malformations (summary by Mercier et al., 2011). Cohen (2001) discussed problems in the definition of holoprosencephaly, which can be viewed from 2 different perspectives: anatomic (fixed) and genetic (broad). When the main interest is description, the anatomic perspective is appropriate. In genetic perspective, a fixed definition of holoprosencephaly is not appropriate because the same mutational cause may result in either holoprosencephaly or some microform of holoprosencephaly. Cohen (2001) concluded that both fixed and broad definitions are equally valid and depend on context. Munke (1989) provided an extensive review of the etiology and pathogenesis of holoprosencephaly, emphasizing heterogeneity. See also schizencephaly (269160), which may be part of the phenotypic spectrum of HPE. Genetic Heterogeneity of Holoprosencephaly Several loci for holoprosencephaly have been mapped to specific chromosomal sites and the molecular defects in some cases of HPE have been identified. Holoprosencephaly-1 (HPE1) maps to chromosome 21q22. See also HPE2 (157170), caused by mutation in the SIX3 gene (603714) on 2p21; HPE3 (142945), caused by mutation in the SHH gene (600725) on 7q36; HPE4 (142946), caused by mutation in the TGIF gene (602630) on 18p11; HPE5 (609637), caused by mutation in the ZIC2 gene (603073) on 13q32; HPE6 (605934), mapped to 2q37; HPE7 (610828), caused by mutation in the PTCH1 gene (601309) on 9q22; HPE8 (609408), mapped to 14q13; HPE9 (610829), caused by mutation in the GLI2 gene (165230) on 2q14; HPE10 (612530), mapped to 1q41-q42; HPE11 (614226), caused by mutation in the CDON gene (608707) on 11q24; HPE12 (618500), caused by mutation in the CNOT1 gene (604917) on 16q21; HPE13 (301043), caused by mutation in the STAG2 gene (300826) on Xq25; and HPE14 (619895), caused by mutation in the PLCH1 gene (612835) on 3q25. Wallis and Muenke (2000) gave an overview of mutations in holoprosencephaly. They indicated that at least 12 different loci had been associated with HPE. Mutations in genes involved in the multiprotein cohesin complex, including STAG2, have been shown to be involved in midline brain defects such as HPE. Mutations in some of those genes cause Cornelia de Lange syndrome (CDLS; see 122470), and some patients with severe forms of CDLS may have midline brain defects. See, for example, CDLS2 (300590), CDLS3 (610759), and CDLS4 (614701). [from OMIM]

MedGen UID:
78617
Concept ID:
C0266667
Congenital Abnormality
11.

Medulloblastoma

Medulloblastoma is the most common brain tumor in children. It accounts for 16% of all pediatric brain tumors, and 40% of all cerebellar tumors in childhood are medulloblastoma. Medulloblastoma occurs bimodally, with peak incidences between 3 and 4 years and 8 and 9 years of age. Approximately 10 to 15% of medulloblastomas are diagnosed in infancy. Medulloblastoma accounts for less than 1% of central nervous system (CNS) tumors in adults, with highest incidence in adults 20 to 34 years of age. In 1 to 2% of patients, medulloblastoma is associated with Gorlin syndrome (109400), a nevoid basal carcinoma syndrome. Medulloblastoma also occurs in up to 40% of patients with Turcot syndrome (see 276300). Medulloblastoma is thought to arise from neural stem cell precursors in the granular cell layer of the cerebellum. Standard treatment includes surgery, chemotherapy, and, depending on the age of the patient, radiation therapy (Crawford et al., 2007). Millard and De Braganca (2016) reviewed the histopathologic variants and molecular subgroups of medulloblastoma. Pretreatment prognosis of medulloblastoma has been refined by histopathologic subclassification into the following variants: large-cell medulloblastoma, anaplastic medulloblastoma, desmoplastic/nodular medulloblastoma, and medulloblastoma with extensive nodularity (MBEN). The latter 2 groups have been shown to have a significantly superior prognosis as compared to the large cell and anaplastic groups in young children. At the molecular level, medulloblastomas have been categorized into the following subgroups: wingless (WNT), sonic hedgehog (SHH), group 3, and group 4. Each subgroup is characterized by a unique set of genetics and gene expression as well as demographic and clinical features. [from OMIM]

MedGen UID:
7517
Concept ID:
C0025149
Neoplastic Process
12.

Fanconi renotubular syndrome 1

MedGen UID:
1635492
Concept ID:
C4551503
Disease or Syndrome
13.

Mitochondrial complex III deficiency nuclear type 1

Autosomal recessive mitochondrial complex III deficiency is a severe multisystem disorder with onset at birth of lactic acidosis, hypotonia, hypoglycemia, failure to thrive, encephalopathy, and delayed psychomotor development. Visceral involvement, including hepatopathy and renal tubulopathy, may also occur. Many patients die in early childhood, but some may show longer survival (de Lonlay et al., 2001; De Meirleir et al., 2003). Genetic Heterogeneity of Mitochondrial Complex III Deficiency Mitochondrial complex III deficiency can be caused by mutation in several different nuclear-encoded genes. See MC3DN2 (615157), caused by mutation in the TTC19 gene (613814) on chromosome 17p12; MC3DN3 (615158), caused by mutation in the UQCRB gene (191330) on chromosome 8q; MC3DN4 (615159), caused by mutation in the UQCRQ gene (612080) on chromosome 5q31; MC3DN5 (615160), caused by mutation in the UQCRC2 gene (191329) on chromosome 16p12; MC3DN6 (615453), caused by mutation in the CYC1 gene (123980) on chromosome 8q24; MC3DN7 (615824), caused by mutation in the UQCC2 gene (614461) on chromosome 6p21; MC3DN8 (615838), caused by mutation in the LYRM7 gene (615831) on chromosome 5q23; MC3DN9 (616111), caused by mutation in the UQCC3 gene (616097) on chromosome 11q12; and MC3DN10 (618775), caused by mutation in the UQCRFS1 gene (191327) on chromosome 19q12. See also MTYCB (516020) for a discussion of a milder phenotype associated with isolated mitochondrial complex III deficiency and mutations in a mitochondrial-encoded gene. [from OMIM]

MedGen UID:
762097
Concept ID:
C3541471
Disease or Syndrome
14.

Heterotaxy, visceral, 1, X-linked

Heterotaxy Heterotaxy ('heter' meaning 'other' and 'taxy' meaning 'arrangement'), or situs ambiguus, is a developmental condition characterized by randomization of the placement of visceral organs, including the heart, lungs, liver, spleen, and stomach. The organs are oriented randomly with respect to the left-right axis and with respect to one another (Srivastava, 1997). Heterotaxy is a clinically and genetically heterogeneous disorder. Multiple Types of Congenital Heart Defects Congenital heart defects (CHTD) are among the most common congenital defects, occurring with an incidence of 8/1,000 live births. The etiology of CHTD is complex, with contributions from environmental exposure, chromosomal abnormalities, and gene defects. Some patients with CHTD also have cardiac arrhythmias, which may be due to the anatomic defect itself or to surgical interventions (summary by van de Meerakker et al., 2011). Reviews Obler et al. (2008) reviewed published cases of double-outlet right ventricle and discussed etiology and associations. Genetic Heterogeneity of Visceral Heterotaxy See also HTX2 (605376), caused by mutation in the CFC1 gene (605194) on chromosome 2q21; HTX3 (606325), which maps to chromosome 6q21; HTX4 (613751), caused by mutation in the ACVR2B gene (602730) on chromosome 3p22; HTX5 (270100), caused by mutation in the NODAL gene (601265) on chromosome 10q22; HTX6 (614779), caused by mutation in the CCDC11 gene (614759) on chromosome 18q21; HTX7 (616749), caused by mutation in the MMP21 gene (608416) on chromosome 10q26; HTX8 (617205), caused by mutation in the PKD1L1 gene (609721) on chromosome 7p12; HTX9 (618948), caused by mutation in the MNS1 gene (610766) on chromosome 15q21; HTX10 (619607), caused by mutation in the CFAP52 gene (609804) on chromosome 17p13; HTX11 (619608), caused by mutation in the CFAP45 gene (605152) on chromosome 1q23; and HTX12 (619702), caused by mutation in the CIROP gene (619703) on chromosome 14q11. Genetic Heterogeneity of Multiple Types of Congenital Heart Defects An X-linked form of CHTD, CHTD1, is caused by mutation in the ZIC3 gene on chromosome Xq26. CHTD2 (614980) is caused by mutation in the TAB2 gene (605101) on chromosome 6q25. A form of nonsyndromic congenital heart defects associated with cardiac rhythm and conduction disturbances (CHTD3; 614954) has been mapped to chromosome 9q31. CHTD4 (615779) is caused by mutation in the NR2F2 gene (107773) on chromosome 15q26. CHTD5 (617912) is caused by mutation in the GATA5 gene (611496) on chromosome 20q13. CHTD6 (613854) is caused by mutation in the GDF1 gene (602880) on chromosome 19p13. CHTD7 (618780) is caused by mutation in the FLT4 gene (136352) on chromosome 5q35. CHTD8 (619657) is caused by mutation in the SMAD2 gene (601366) on chromosome 18q21. CHTD9 (620294) is caused by mutation in the PLXND1 gene (604282) on chromosome 3q22. [from OMIM]

MedGen UID:
336609
Concept ID:
C1844020
Disease or Syndrome
15.

Osteogenesis imperfecta type I

COL1A1/2 osteogenesis imperfecta (COL1A1/2-OI) is characterized by fractures with minimal or absent trauma, variable dentinogenesis imperfecta (DI), and, in adult years, hearing loss. The clinical features of COL1A1/2-OI represent a continuum ranging from perinatal lethality to individuals with severe skeletal deformities, mobility impairments, and very short stature to nearly asymptomatic individuals with a mild predisposition to fractures, normal dentition, normal stature, and normal life span. Fractures can occur in any bone but are most common in the extremities. DI is characterized by gray or brown teeth that may appear translucent, wear down, and break easily. COL1A1/2-OI has been classified into four types based on clinical presentation and radiographic findings. This classification system can be helpful in providing information about prognosis and management for a given individual. The four more common OI types are now referred to as follows: Classic non-deforming OI with blue sclerae (previously OI type I). Perinatally lethal OI (previously OI type II). Progressively deforming OI (previously OI type III). Common variable OI with normal sclerae (previously OI type IV). [from GeneReviews]

MedGen UID:
9799
Concept ID:
C0023931
Disease or Syndrome
16.

Congenital prothrombin deficiency

Prothrombin deficiency is an extremely rare autosomal recessive bleeding disorder characterized by low levels of circulating prothrombin; it affects about 1 in 2,000,000 individuals. There are 2 main types: type I deficiency, known as true prothrombin deficiency or 'hypoprothrombinemia,' is defined as plasma levels of prothrombin being less than 10% of normal with a concomitant decrease in activity. These patients have severe bleeding from birth, including umbilical cord hemorrhage, hematomas, ecchymoses, hematuria, mucosal bleeding, hemarthroses, intracranial bleeding, gastrointestinal bleeding, and menorrhagia. Type II deficiency, known as 'dysprothrombinemia,' is characterized by normal or low-normal synthesis of a dysfunctional protein. Bleeding symptoms are more variable, depending on the amount of residual functional activity. Variant prothrombin gene alleles can result in 'hypoprothrombinemia' or 'dysprothrombinemia,' and individuals who are compound heterozygous for these 2 types of alleles have variable manifestations. Heterozygous mutation carriers, who have plasma levels between 40 and 60% of normal, are usually asymptomatic, but can show bleeding after tooth extraction or surgical procedures (review by Lancellotti and De Cristofaro, 2009). [from OMIM]

MedGen UID:
124425
Concept ID:
C0272317
Disease or Syndrome
17.

Neural tube defects, folate-sensitive

Neural tube defects have a birth incidence of approximately 1 in 1,000 in American Caucasians and are the second most common type of birth defect after congenital heart defects. The most common NTDs are open spina bifida (myelomeningocele) and anencephaly (206500) (Detrait et al., 2005). Women with elevated plasma homocysteine, low folate, or low vitamin B12 (cobalamin) are at increased risk of having a child with a neural tube defect (O'Leary et al., 2005). Motulsky (1996) cited evidence from the Centers for Disease Control ( Anonymous, 1992) that folic acid given before and during the first 4 weeks of pregnancy can prevent 50% or more of neural tube defects. Botto et al. (1999) and Detrait et al. (2005) provided reviews of neural tube defects. De Marco et al. (2006) provided a detailed review of neurulation and the possible etiologies of neural tube defects. [from OMIM]

MedGen UID:
355746
Concept ID:
C1866558
Disease or Syndrome
18.

Adenylosuccinate lyase deficiency

Adenylosuccinase deficiency is an autosomal recessive inborn error of metabolism caused by an enzymatic defect in de novo purine synthesis (DNPS) pathway. ADSL deficiency leads to the accumulation of toxic intermediates, including succinyladenosine (S-Ado) and succinylaminoimidazole carboxamide riboside (SAICAr) in body fluids. There are 3 major phenotypic forms of the disorder that correlate with different values of the S-Ado and SAICAr concentration ratios (S-Ado/SAICAr) in the cerebrospinal fluid. These include the most severe fatal neonatal encephalopathy (S-Ado/SAICAr ratio less than 1); childhood form (type I) with severe psychomotor retardation (S-Ado/SAICAr ratio close to 1), and a milder form (type II) with psychomotor retardation or hypotonia (S-Ado/SAICAr ratio greater than 2) (summary by Baresova et al., 2012). [from OMIM]

MedGen UID:
78641
Concept ID:
C0268126
Disease or Syndrome
19.

Actin accumulation myopathy

Congenital myopathy-2A (CMYO2A) is an autosomal dominant disorder of the skeletal muscle characterized by infantile- or childhood-onset myopathy with delayed motor milestones and nonprogressive muscle weakness. Of the patients with congenital myopathy caused by mutation in the ACTA1 gene, about 90% carry heterozygous mutations that are usually de novo and cause the severe infantile phenotype (CMYO2C; 620278). Some patients with de novo mutations have a more typical and milder disease course with delayed motor development and proximal muscle weakness, but are able to achieve independent ambulation. Less frequently, autosomal dominant transmission of the disorder within a family may occur when the ACTA1 mutation produces a phenotype compatible with adult life. Of note, intrafamilial variability has also been reported: a severely affected proband may be identified and then mildly affected or even asymptomatic relatives are found to carry the same mutation. The severity of the disease most likely depends on the detrimental effect of the mutation, although there are probably additional modifying factors (Ryan et al., 2001; Laing et al., 2009; Sanoudou and Beggs, 2001; Agrawal et al., 2004; Nowak et al., 2013; Sewry et al., 2019; Laitila and Wallgren-Pettersson, 2021). The most common histologic finding on muscle biopsy in patients with ACTA1 mutations is the presence of 'nemaline rods,' which represent abnormal thread- or rod-like structures ('nema' is Greek for 'thread'). However, skeletal muscle biopsy from patients with mutations in the ACTA1 gene can show a range of pathologic phenotypes. These include classic rods, intranuclear rods, clumped filaments, cores, or fiber-type disproportion, all of which are nonspecific pathologic findings and not pathognomonic of a specific congenital myopathy. Most patients have clinically severe disease, regardless of the histopathologic phenotype (Nowak et al., 2007; Sewry et al., 2019). ACTA1 mutations are the second most common cause of congenital myopathies classified histologically as 'nemaline myopathy' after mutations in the NEB gene (161650). ACTA1 mutations are overrepresented in the severe phenotype with early death (Laing et al., 2009). For a discussion of genetic heterogeneity of congenital myopathy, see CMYO1A (117000). For a discussion of genetic heterogeneity of nemaline myopathy, see NEM2 (256030). [from OMIM]

MedGen UID:
777997
Concept ID:
C3711389
Disease or Syndrome
20.

Long QT syndrome 2

Long QT syndrome (LQTS) is a cardiac electrophysiologic disorder, characterized by QT prolongation and T-wave abnormalities on the EKG that are associated with tachyarrhythmias, typically the ventricular tachycardia torsade de pointes (TdP). TdP is usually self-terminating, thus causing a syncopal event, the most common symptom in individuals with LQTS. Such cardiac events typically occur during exercise and emotional stress, less frequently during sleep, and usually without warning. In some instances, TdP degenerates to ventricular fibrillation and causes aborted cardiac arrest (if the individual is defibrillated) or sudden death. Approximately 50% of untreated individuals with a pathogenic variant in one of the genes associated with LQTS have symptoms, usually one to a few syncopal events. While cardiac events may occur from infancy through middle age, they are most common from the preteen years through the 20s. Some types of LQTS are associated with a phenotype extending beyond cardiac arrhythmia. In addition to the prolonged QT interval, associations include muscle weakness and facial dysmorphism in Andersen-Tawil syndrome (LQTS type 7); hand/foot, facial, and neurodevelopmental features in Timothy syndrome (LQTS type 8); and profound sensorineural hearing loss in Jervell and Lange-Nielson syndrome. [from GeneReviews]

MedGen UID:
462293
Concept ID:
C3150943
Disease or Syndrome
Format
Items per page

Send to:

Choose Destination

Supplemental Content

Find related data

Search details

See more...

Recent activity