U.S. flag

An official website of the United States government

Format

Send to:

Choose Destination

Hyperxanthinemia

MedGen UID:
1684761
Concept ID:
C5139051
Finding
Synonym: Abnormality of xanthine metabolism
 
HPO: HP:0010933

Definition

An increased level of xanthine in the blood circulation. [from HPO]

Conditions with this feature

Hereditary xanthinuria type 1
MedGen UID:
82771
Concept ID:
C0268118
Disease or Syndrome
Xanthinuria, which was first described by Dent and Philpot (1954), is characterized by excretion of large amounts of xanthine in the urine and a tendency to form xanthine stones. Uric acid is strikingly diminished in serum and urine. Two clinically similar but distinct forms of xanthinuria are recognized. In type I (XAN1) there is an isolated deficiency of xanthine dehydrogenase, and in type II (XAN2; 603592) there is a dual deficiency of xanthine dehydrogenase and aldehyde oxidase (603592). Type I patients can metabolize allopurinol, whereas type II patients cannot (Simmonds et al., 1995). Xanthinuria also occurs in molybdenum cofactor deficiency (252150). Type II xanthinuria is caused by mutation in the MOCOS gene (613274), which encodes the enzyme that sulfurates the molybdenum cofactor for XDH and AOX1 (602841).
Xanthinuria type II
MedGen UID:
350953
Concept ID:
C1863688
Disease or Syndrome
Xanthinuria type II (XAN2) is an autosomal recessive inborn error of metabolism resulting from a defect in the synthesis of the molybdenum cofactor, which is necessary for the 2 enzymes that degrade xanthine: XDH (607633) and AOX1 (602841). Most individuals with type II xanthinuria are asymptomatic, but some develop urinary tract calculi, acute renal failure, or myositis due to tissue deposition of xanthine. Laboratory studies show increased serum and urinary hypoxanthine and xanthine and decreased serum and urinary uric acid (summary by Ichida et al., 2001). Two clinically similar but distinct forms of xanthinuria are recognized. In type I xanthinuria (XAN1; 278300), there is an isolated deficiency of xanthine dehydrogenase resulting from mutation in the XDH gene; in type II, there is a dual deficiency of xanthine dehydrogenase and aldehyde oxidase. Type I patients can metabolize allopurinol, whereas type II patients cannot (Simmonds et al., 1995).

Recent clinical studies

Therapy

Hande KR, Perini F, Putterman G, Elin R
Clin Chem 1979 Aug;25(8):1492-4. PMID: 455692

Supplemental Content

Table of contents

    Clinical resources

    Consumer resources

    Recent activity

    Your browsing activity is empty.

    Activity recording is turned off.

    Turn recording back on

    See more...