Paramyotonia congenita of Von Eulenburg- MedGen UID:
- 113142
- •Concept ID:
- C0221055
- •
- Disease or Syndrome
Paramyotonia congenita (PMC) is an autosomal dominant myotonic disorder characterized by cold-induced prolonged localized muscle contraction and weakness. Patients may experience episodes of generalized weakness (periodic paralysis) unassociated with cold exposure (summary by Ptacek et al., 1992).
Chiari type II malformation- MedGen UID:
- 108222
- •Concept ID:
- C0555206
- •
- Congenital Abnormality
Chiari malformation type II (CM2), also known as the Arnold-Chiari malformation, consists of elongation and descent of the inferior cerebellar vermis, cerebellar hemispheres, pons, medulla, and fourth ventricle through the foramen magnum into the spinal canal. CM2 is uniquely associated with myelomeningocele (open spina bifida; see 182940) and is found only in this population (Stevenson, 2004). It is believed to be a disorder of neuroectodermal origin (Schijman, 2004).
For a general phenotypic description of the different forms of Chiari malformations, see Chiari malformation type I (CM1; 118420).
Autosomal recessive distal spinal muscular atrophy 1- MedGen UID:
- 388083
- •Concept ID:
- C1858517
- •
- Disease or Syndrome
Autosomal recessive distal hereditary motor neuronopathy-1 (HMNR1) is characterized by distal and proximal muscle weakness and diaphragmatic palsy that leads to respiratory distress. Without intervention, most infants with the severe form of the disease die before 2 years of age. Affected individuals present in infancy with inspiratory stridor, weak cry, recurrent bronchopneumonia, and swallowing difficulties. The disorder is caused by distal and progressive motor neuronopathy resulting in muscle weakness (summary by Perego et al., 2020).
Genetic Heterogeneity of Autosomal Recessive Distal Hereditary Motor Neuronopathy
See also HMNR2 (605726), caused by mutation in the SIGMAR1 gene (601978); HMNR3 (607088) (encompassing Harding HMN types III and IV), which maps to chromosome 11q13; HMNR4 (611067), caused by mutation in the PLEKHG5 gene (611101); HMNR5 (614881), caused by mutation in the DNAJB2 gene (604139); HMNR6 (620011), caused by mutation in the REEP1 gene (609139); HMNR7 (619216), caused by mutation in the VWA1 gene (611901); HMNR8 (618912), caused by mutation in the SORD gene (182500); HMNR9 (620402), caused by mutation in the COQ7 gene (601683); HMNR10 (620542), caused by mutation in the VRK1 gene (602168); and HMNR11 (620854), caused by mutation in the RTN2 gene (603183).
D-2-hydroxyglutaric aciduria 1- MedGen UID:
- 463405
- •Concept ID:
- C3152055
- •
- Disease or Syndrome
D-2-hydroxyglutaric aciduria is a neurometabolic disorder first described by Chalmers et al. (1980). Clinical symptoms include developmental delay, epilepsy, hypotonia, and dysmorphic features. Mild and severe phenotypes were characterized (van der Knaap et al., 1999). The severe phenotype is homogeneous and is characterized by early infantile-onset epileptic encephalopathy and, often, cardiomyopathy. The mild phenotype has a more variable clinical presentation.
Genetic Heterogeneity of D-2-Hydroxyglutaric Aciduria
D-2-hydroxyglutaric aciduria-2 (D2HGA2; 613657) is caused by heterozygous mutation in the mitochondrial isocitrate dehydrogenase-2 gene (IDH2; 147650) on chromosome 15q26.
Spondyloepiphyseal dysplasia, nishimura type- MedGen UID:
- 930816
- •Concept ID:
- C4305147
- •
- Disease or Syndrome
The Nishimura type of spondyloepiphyseal dysplasia (SEDN) is characterized by disproportionate short stature with short limbs, small hands and feet, and midface hypoplasia with small nose. Radiologic hallmarks include mild spondylar dysplasia, delayed epiphyseal ossification of the hip and knee, and severe brachydactyly with cone-shaped phalangeal epiphyses (Grigelioniene et al., 2019).
Cardioencephalomyopathy, fatal infantile, due to cytochrome c oxidase deficiency 1- MedGen UID:
- 1748867
- •Concept ID:
- C5399977
- •
- Disease or Syndrome
Mitochondrial complex IV deficiency nuclear type 2 (MC4DN2) is an autosomal recessive multisystem metabolic disorder characterized by the onset of symptoms at birth or in the first weeks or months of life. Affected individuals have severe hypotonia, often associated with feeding difficulties and respiratory insufficiency necessitating tube feeding and mechanical ventilation. The vast majority of patients develop hypertrophic cardiomyopathy in the first days or weeks of life, which usually leads to death in infancy or early childhood. Patients also show neurologic abnormalities, including developmental delay, nystagmus, fasciculations, dystonia, EEG changes, and brain imaging abnormalities compatible with a diagnosis of Leigh syndrome (see 256000). There may also be evidence of systemic involvement with hepatomegaly and myopathy, although neurogenic muscle atrophy is more common and may resemble spinal muscular atrophy type I (SMA1; 253300). Serum lactate is increased, and laboratory studies show decreased mitochondrial complex IV protein and activity levels in various tissues, including heart and skeletal muscle. Most patients die in infancy of cardiorespiratory failure (summary by Papadopoulou et al., 1999).
For a discussion of genetic heterogeneity of mitochondrial complex IV (cytochrome c oxidase) deficiency, see 220110.