U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 7

1.

Integrative analysis of disease signatures shows inflammation disrupts juvenile experience-dependent cortical plasticity

(Submitter supplied) Throughout childhood and adolescence, periods of heightened neuroplasticity are critical for the development of healthy brain function and behavior. Given the high prevalence of neurodevelopmental disorders such as autism, identifying disruptors of developmental plasticity represents an essential step for developing strategies for prevention and intervention. Applying a novel computational approach that systematically assessed connections between 436 transcriptional signatures of disease and multiple signatures of neuroplasticity, we identified inflammation as a common pathological process central to a diverse set of diseases predicted to dysregulate plasticity signatures. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6887
9 Samples
Download data: TXT
Series
Accession:
GSE89757
ID:
200089757
2.

Non-cell autonomous Otx2 homeoprotein regulates visual cortex plasticity through Gadd45b

(Submitter supplied) A better understanding of how Otx2 regulates plasticity in the visual cortex requires that its non-cell autonomous transcription targets be identified. We dissected layer IV of the visual cortex and used RNA-sequencing to analyze gene expression at postnatal day 30 (P30) and P100 in wild-type (WT) and Otx2+/GFP heterozygotes mice. The rationale is that CP plasticity is opened at P30 in WT but not in Otx2+/GFP mice, given that genetic deletion delays CP opening (Sugiyama et al., 2008), and that the CP is closed at P100 in WT mice and not yet in Otx2+/GFP mice. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL13112 GPL15103
8 Samples
Download data: TXT, XLSX
Series
Accession:
GSE98258
ID:
200098258
3.

Expression data from postnatal day (P) 14, 28, 60 mouse visual cortex (V1)

(Submitter supplied) Analysis of gene expression before (P14), during (P28), and after (P60) the critical period for ocular dominance plasticity. Keywords: time course
Organism:
Mus musculus
Type:
Expression profiling by array
Datasets:
GDS3375 GDS3376 GDS3382
Platforms:
GPL83 GPL81 GPL82
30 Samples
Download data: CEL, CHP
Series
Accession:
GSE11764
ID:
200011764
4.
Full record GDS3382

Visual cortex during the critical period for ocular dominance (MG-U74C)

Analysis of visual cortices before the critical period for ocular dominance plasticity opens [postnatal day 14 (P14)], at the peak sensitivity of the critical period (P28), and after the critical period (P60). Results provide insight into the molecular mechanisms associated with the critical period.
Organism:
Mus musculus
Type:
Expression profiling by array, count, 3 age sets
Platform:
GPL83
Series:
GSE11764
10 Samples
Download data: CEL, CHP
5.
Full record GDS3376

Visual cortex during the critical period for ocular dominance (MG-U74B)

Analysis of visual cortices before the critical period for ocular dominance plasticity opens [postnatal day 14 (P14)], at the peak sensitivity of the critical period (P28), and after the critical period (P60). Results provide insight into the molecular mechanisms associated with the critical period.
Organism:
Mus musculus
Type:
Expression profiling by array, count, 3 age sets
Platform:
GPL82
Series:
GSE11764
10 Samples
Download data: CEL, CHP
6.
Full record GDS3375

Visual cortex during the critical period for ocular dominance (MG-U74A)

Analysis of visual cortices before the critical period for ocular dominance plasticity opens [postnatal day 14 (P14)], at the peak sensitivity of the critical period (P28), and after the critical period (P60). Results provide insight into the molecular mechanisms associated with the critical period.
Organism:
Mus musculus
Type:
Expression profiling by array, count, 3 age sets
Platform:
GPL81
Series:
GSE11764
10 Samples
Download data: CEL, CHP
7.

Changes in miRNA expression in mouse primary visual cortex following visual deprivation

(Submitter supplied) Visual deprivation, either in the form of dark rearing (DR) or monocular deprivation (MD) are established paradigms for studying cortical plasticity. We have used miRNA microarray to uncover miRNAs whose expression is altered in primary visual cortex following DR and/or MD.
Organism:
Mus musculus
Type:
Non-coding RNA profiling by array
Platform:
GPL10384
9 Samples
Download data: TXT
Series
Accession:
GSE31536
ID:
200031536
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=5|qty=2|blobid=MCID_672ad131098d4d34592f1fc3|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center