U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Natural variation of piRNA expression affects immunity to transposable elements

(Submitter supplied) In the Drosophila germline, transposable elements (TEs) are silenced by PIWI-interacting RNA (piRNA) that originate from distinct genomic regions termed piRNA clusters and are processed by PIWI-subfamily Argonaute proteins. Here, we explore the variation in the ability to restrain an alien TE in different Drosophila strains. The I-element is a retrotransposon involved in the phenomenon of I-R hybrid dysgenesis in Drosophila melanogaster. more...
Organism:
Drosophila melanogaster
Type:
Non-coding RNA profiling by high throughput sequencing
Platform:
GPL13304
7 Samples
Download data: TXT
Series
Accession:
GSE83316
ID:
200083316
2.

The Integrity of piRNA Clusters is Abolished by Insulators in the Drosophila Germline

(Submitter supplied) Piwi-interacting RNAs (piRNAs) control transposable element (TE) activity in the germline. piRNAs are produced from single-stranded precursors transcribed from distinct genomic loci, enriched by TE fragments and termed piRNA clusters. The specific chromatin organization and transcriptional regulation of Drosophila germline-specific piRNA clusters ensure transcription and processing of piRNA precursors. more...
Organism:
Drosophila melanogaster
Type:
Non-coding RNA profiling by high throughput sequencing
Platforms:
GPL13304 GPL25244
6 Samples
Download data: TXT
Series
Accession:
GSE125173
ID:
200125173
3.

Telomeric retrotransposon HeT-A contains a bidirectional promoter that initiates divergent transcription of piRNA precursors in Drosophila germline

(Submitter supplied) PIWI-interacting (pi) RNAs provide silencing of transposable elements (TE) in the germline. Drosophila telomeres are maintained by transpositions of specialized telomeric retroelements. piRNAs generated from sense and antisense transcripts of telomeric elements provide telomere length control in the germline. Previously, we have found that antisense transcription of the major telomeric retroelement HeT-A is initiated upstream of the HeT-A sense transcription start site. more...
Organism:
Drosophila melanogaster
Type:
Non-coding RNA profiling by high throughput sequencing
Platform:
GPL13304
3 Samples
Download data: TXT
Series
Accession:
GSE78135
ID:
200078135
4.

Piwi is required during Drosophila embryogenesis to license dual-strand piRNA clusters for transposon repression in adult ovaries

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Drosophila melanogaster
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing
Platforms:
GPL13304 GPL19132 GPL17275
19 Samples
Download data: BW, TXT
Series
Accession:
GSE83238
ID:
200083238
5.

Piwi is required during Drosophila embryogenesis to license dual-strand piRNA clusters for transposon repression in adult ovaries [smallRNA-seq]

(Submitter supplied) Most piRNAs in the Drosophila female germline are transcribed from heterochromatic regions called dual-strand piRNA clusters. Histone 3 lysine 9 trimethylation (H3K9me3) is required for licensing piRNA production by these clusters. However, it is unclear when and how they acquire this permissive heterochromatic state. Although it has been suggested that piRNA cluster licensing is Piwi-independent, here we show that transient Piwi depletion in Drosophila embryos, using a refined knock-down system, results in H3K9me3 decrease at piRNA clusters. more...
Organism:
Drosophila melanogaster
Type:
Non-coding RNA profiling by high throughput sequencing
Platforms:
GPL13304 GPL17275
5 Samples
Download data: TXT
Series
Accession:
GSE83236
ID:
200083236
6.

Piwi is required during Drosophila embryogenesis to license dual-strand piRNA clusters for transposon repression in adult ovaries [RNA-seq]

(Submitter supplied) Most piRNAs in the Drosophila female germline are transcribed from heterochromatic regions called dual-strand piRNA clusters. Histone 3 lysine 9 trimethylation (H3K9me3) is required for licensing piRNA production by these clusters. However, it is unclear when and how they acquire this permissive heterochromatic state. Although it has been suggested that piRNA cluster licensing is Piwi-independent, here we show that transient Piwi depletion in Drosophila embryos, using a refined knock-down system, results in H3K9me3 decrease at piRNA clusters. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing
Platform:
GPL19132
4 Samples
Download data: TXT
Series
Accession:
GSE83235
ID:
200083235
7.

Piwi is required during Drosophila embryogenesis to license dual-strand piRNA clusters for transposon repression in adult ovaries [ChIP-seq]

(Submitter supplied) Most piRNAs in the Drosophila female germline are transcribed from heterochromatic regions called dual-strand piRNA clusters. Histone 3 lysine 9 trimethylation (H3K9me3) is required for licensing piRNA production by these clusters. However, it is unclear when and how they acquire this permissive heterochromatic state. Although it has been suggested that piRNA cluster licensing is Piwi-independent, here we show that transient Piwi depletion in Drosophila embryos, using a refined knock-down system, results in H3K9me3 decrease at piRNA clusters. more...
Organism:
Drosophila melanogaster
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17275
10 Samples
Download data: BW
Series
Accession:
GSE83234
ID:
200083234
8.

piRNA-mediated regulation of transposon alternative splicing in soma and germline

(Submitter supplied) Transposable elements can drive genome evolution, but their enhanced activity is detrimental to the host and therefore must be tightly regulated. The piwi-interacting small RNAs (piRNAs) pathway is critically important for transposable element regulation, by inducing transcriptional silencing or post-transcriptional decay of mRNAs. We show that piRNAs and piRNA biogenesis components regulate pre-mRNA splicing of P transposable element transcripts in vivo, leading to the production of the non-transposase-encoding mature mRNA isoform in germ cells. more...
Organism:
Drosophila melanogaster
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platform:
GPL17275
20 Samples
Download data: BEDGRAPH, BIGWIG
Series
Accession:
GSE103582
ID:
200103582
9.

The Cutoff protein regulates piRNA cluster expression and piRNA production in the Drosophila germline

(Submitter supplied) In a broad range of organisms, Piwi-interacting RNAs (piRNAs) have emerged as core components of a surveillance system that protects the genome by silencing transposable and repetitive elements. A vast proportion of piRNAs is produced from discrete genomic loci, termed piRNA clusters. The molecular mechanisms and the factors that govern the expression of these loci are largely unknown. We have preciously shown the Cutoff (Cuff), a protein with similarity to yeast Rai1, is a component of the piRNA pathway. more...
Organism:
Drosophila melanogaster
Type:
Non-coding RNA profiling by high throughput sequencing
Platform:
GPL9061
4 Samples
Download data: WIG
Series
Accession:
GSE47738
ID:
200047738
10.

Epigenetic requirements for triggering heterochromatinization and Piwi-interacting RNA production from transgenes in the Drosophila germline

(Submitter supplied) Transgenes containing a fragment of I transposon represent a powerful model of piRNA cluster de novo formation in the Drosophila germline. We revealed that the same transgenes located at different genomic loci form piRNA clusters with various capacity of small RNA production. Transgenic piRNA clusters are not established in piRNA pathway mutants. However, in wild-type context, the endogenous ancestral I-related piRNAs are sufficient to heterochromatinize and convert the I-containing transgenes into piRNA-producing loci. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing; Other
Platforms:
GPL25244 GPL17275
20 Samples
Download data: BW, TXT
Series
Accession:
GSE138886
ID:
200138886
11.

Maternally inherited piRNAs direct transient heterochromatin formation at active transposons during early Drosophila embryogenesis

(Submitter supplied) The piRNA pathway controls transposon expression in animal germ cells, thereby ensuring genome stability over generations. piRNAs are maternally deposited and required for proper transposon silencing in adult offspring. However, a long-standing question in the field is the precise function of maternally deposited piRNAs and its associated factors during embryogenesis. Here, we probe the spatio-temporal expression patterns of several piRNA pathway components during early stages of development. more...
Organism:
Drosophila melanogaster
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing; Other
Platform:
GPL21306
62 Samples
Download data: BED, BW
Series
Accession:
GSE160778
ID:
200160778
12.

Transcriptional and chromatin changes accompanying de novo formation of transgenic piRNA clusters

(Submitter supplied) Expression of transposable elements in the germline is controlled by Piwi-interacting (pi) RNAs produced by genomic loci termed piRNA clusters and associated with Rhino, a Heterochromatin Protein 1 (HP1) homolog. Previously, we have shown that transgenes containing a fragment of the I retrotransposon form de novo piRNA clusters in the Drosophila germline providing suppression of I-element activity. We noted that identical transgenes located in different genomic sites vary considerably in piRNA production and classified them as “strong” and “weak” piRNA clusters. Here, we investigated what chromatin and transcriptional changes occur at the transgene insertion sites after their conversion into piRNA clusters. We found that the formation of a transgenic piRNA cluster is accompanied by activation of transcription from both genomic strands that likely initiates at multiple random sites. The chromatin of all transgene-associated piRNA clusters contain high levels of trimethylated lysine 9 of histone H3 (H3K9me3) and HP1a, whereas Rhino binding is considerably higher at the strong clusters. None of these chromatin marks was revealed at the “empty” sites before transgene insertion. Finally, we have shown that in the nucleus of polyploid nurse cells, the formation of a piRNA cluster at a given transgenic genomic copy works according to an “all– or– nothing” model: either there is high Rhino enrichment or there is no association with Rhino at all. As a result, genomic copies of a weak piRNA transgenic cluster show a mosaic association with Rhino foci, while the majority of strong transgene copies associate with Rhino and are hence involved in piRNA production.
Organism:
Drosophila melanogaster
Type:
Other; Non-coding RNA profiling by high throughput sequencing
Platforms:
GPL17275 GPL13304
3 Samples
Download data: BW, TXT
Series
Accession:
GSE88774
ID:
200088774
13.

Key role of piRNAs in telomeric chromatin maintenance and telomere nuclear positioning in Drosophila germline

(Submitter supplied) Background. Telomeric small RNAs related to PIWI-interacting RNAs (piRNAs) have been described in various eukaryotes; however, their role in germline-specific telomere function remains poorly understood. Using a Drosophila model, we performed an in-depth study of the biogenesis of telomeric piRNAs and their function in telomere homeostasis in the germline. Results To fully characterize telomeric piRNA clusters, we integrated the data obtained from analysis of endogenous telomeric repeats, as well as transgenes inserted into different telomeric and subtelomeric regions. more...
Organism:
Drosophila melanogaster
Type:
Non-coding RNA profiling by high throughput sequencing
Platforms:
GPL13304 GPL17275
9 Samples
Download data: TXT
Series
Accession:
GSE98981
ID:
200098981
14.

piRNA production requires heterochromatin formation in Drosophila

(Submitter supplied) Here, we analyzed H3K9me3 derived from wild type ovarian tissue. Here we show that deposition of histone 3 lysine 9 by the methyltransferase dSETDB1 (egg) is required for piRNA cluster transcription. In the absence of dSETDB1, cluster precursor transcription collapses in germline and somatic gonadal cells and TEs are activated, resulting in germline loss and a block in germline stem cell differentiation. more...
Organism:
Drosophila melanogaster
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9061
1 Sample
Download data
Series
Accession:
GSE30157
ID:
200030157
15.

piRNA production requires heterochromatin formation in Drosophila

(Submitter supplied) Here, we analyzed two small RNA libraries derived from ovarian tissue mutant for either the Drosophila SETDB1 gene, or the Bam gene. Here we show that deposition of histone 3 lysine 9 by the methyltransferase dSETDB1 (egg) is required for piRNA cluster transcription. In the absence of dSETDB1, cluster precursor transcription collapses in germline and somatic gonadal cells and TEs are activated, resulting in germline loss and a block in germline stem cell differentiation. more...
Organism:
Drosophila melanogaster
Type:
Non-coding RNA profiling by high throughput sequencing
Platform:
GPL9061
2 Samples
Download data: CSV
Series
Accession:
GSE30086
ID:
200030086
16.

piRNA-guided slicing of transposon transcripts enforces their transcriptional silencing via specifying the nuclear piRNA repertoire

(Submitter supplied) PIWI-clade Argonaute proteins silence transposon expression in animal gonads. Their target specificity is defined by bound ~23-30nt piRNAs that are processed from single-stranded precursor transcripts via two distinct pathways. Primary piRNAs are defined by the endo-nuclease Zucchini, while biogenesis of secondary piRNAs depends on piRNA-guided transcript cleavage and results in piRNA amplification. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing
Platform:
GPL13304
46 Samples
Download data: BW, TXT
Series
Accession:
GSE71775
ID:
200071775
17.

Characterization of expression changes in armi,rhino,aub,ago3 mutants by tiling array

(Submitter supplied) We characterized changes of transposon and mRNA expressions in armi, rhino ,aub, ago3 mutants with respect to wild type using Affy tiling array. In most of these mutants, mRNA expressions were mostly unchanged but increased expressions was observed for many transposons indicating the role of these proteins in silencing transposons in Drosophila ovaries Keywords: Tiling array transcriptome profiling
Organism:
Drosophila melanogaster
Type:
Expression profiling by genome tiling array
Platform:
GPL6629
15 Samples
Download data: CEL, TXT
Series
Accession:
GSE14370
ID:
200014370
18.

Co-chaperone Hop/dSTIP1 is required for piRNA biogenesis and transposon silencing

(Submitter supplied) piRNAs are 26-30nt germ-line specific small non-coding RNAs that have evolutionarily conserved function in mobile genetic element silencing and maintenance of genome integrity. It has been shown that Drosophila Hsp70/90 Organizing Protein Homolog (Hop) – a co-chaperone interacts with piRNA binding protein Piwi and mediates silencing of phenotypic variations. However, it is not known if Hop has a direct role in piRNA biogenesis and transposon silencing. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing
Platform:
GPL17275
6 Samples
Download data: TXT
Series
Accession:
GSE93934
ID:
200093934
19.

Acetyltransferase Enok regulates transposon silencing by promoting transcription at piRNA clusters and genes involved in piRNA biosynthesis [H3 and H3K23 ChIP-seq]

(Submitter supplied) The PIWI-interacting RNA (piRNA) pathway is an important mechanism to suppress transposon activation in the germline that is highly conserved between Drosophila and mammals. This pathway starts from transcribing piRNA clusters to generate long piRNA precursors. The majority of piRNA clusters lacks a conventional promoter, and therefore their transcription is considered to utilize a noncanonical mechanism. more...
Organism:
Drosophila melanogaster
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17275
12 Samples
Download data: TXT
Series
Accession:
GSE154839
ID:
200154839
20.

Acetyltransferase Enok regulates transposon silencing by promoting transcription at piRNA clusters and genes involved in piRNA biosynthesis (Rhino ChIP-seq)

(Submitter supplied) The PIWI-interacting RNA (piRNA) pathway is an important mechanism to suppress transposon activation in the germline that is highly conserved between Drosophila and mammals. This pathway starts from transcribing piRNA clusters to generate long piRNA precursors. The majority of piRNA clusters lacks a conventional promoter, and therefore their transcription is considered to utilize a noncanonical mechanism. more...
Organism:
Drosophila melanogaster
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17275
4 Samples
Download data: TXT
Series
Accession:
GSE133847
ID:
200133847
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=4|qty=2|blobid=MCID_6732292f4322b4744268111c|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center