U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

The histone variant H2A.Z promotes initiation of meiotic recombination (ChIP)

(Submitter supplied) Meiotic homologous recombination is a critical DNA-templated event for sexually-reproducing organisms. It is initiated by a programmed formation of DNA double strand breaks (DSBs), mainly formed at recombination hotspots, and is, like all other DNA-related processes, under great influence of chromatin structure. For example, local chromatin around hotspots directly impacts DSB formation. In addition, DSB is proposed to occur in a higher-order chromatin architecture termed “axis-loop”, in which many loops protrude from proteinaceous axis. more...
Organism:
Schizosaccharomyces pombe
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL7715
1 Sample
Download data: BAR, CEL
Series
Accession:
GSE81776
ID:
200081776
2.

The histone variant H2A.Z promotes initiation of meiotic recombination

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Schizosaccharomyces pombe; Saccharomyces cerevisiae
Type:
Expression profiling by array; Genome binding/occupancy profiling by genome tiling array
Platforms:
GPL7715 GPL2529
5 Samples
Download data: BAR, CEL
Series
Accession:
GSE81777
ID:
200081777
3.

The histone variant H2A.Z promotes initiation of meiotic recombination (expression)

(Submitter supplied) Meiotic homologous recombination is a critical DNA-templated event for sexually-reproducing organisms. It is initiated by a programmed formation of DNA double strand breaks (DSBs), mainly formed at recombination hotspots, and is, like all other DNA-related processes, under great influence of chromatin structure. For example, local chromatin around hotspots directly impacts DSB formation. In addition, DSB is proposed to occur in a higher-order chromatin architecture termed “axis-loop”, in which many loops protrude from proteinaceous axis. more...
Organism:
Schizosaccharomyces pombe; Saccharomyces cerevisiae
Type:
Expression profiling by array
Platform:
GPL2529
4 Samples
Download data: CEL
Series
Accession:
GSE81775
ID:
200081775
4.

Histone H3 lysine9 acetylation, rather than lysine4 trimethylation, marks meiotic recombination hotspots and promotes recombination initiation in fission yeast

(Submitter supplied) Histone modifications are associated with meiotic recombination hotspots, discrete sites with augmented recombination frequency. For example, trimethylation of histone H3 lysine4 (H3K4me3) marks most hotspots in budding yeast and mouse. Modified histones are known to regulate meiotic recombination partly by promoting DNA double strand break (DSB) formation, but the role and precise landscape of histone modifications at hotspots remain unclear. more...
Organism:
Schizosaccharomyces pombe
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL7715
7 Samples
Download data: BAR, CEL
Series
Accession:
GSE31648
ID:
200031648
5.

RNA-seq in bas1 and ino4 mutants

(Submitter supplied) Meiotic recombination is initiated by developmentally programmed DNA double-strand breaks (DSBs). In S. cerevisiae, the vast majority of DSBs occur in the nucleosome-depleted regions at gene promoters, where transcription factors (TFs) B296bind. It has been proposed that TF binding can stimulate DSB formation nearby by modulating local chromatin structure. However, a prior study in TF bas1 mutant suggested that the role of TF binding in determining break formation is complex. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13821
6 Samples
Download data: TXT
Series
Accession:
GSE70911
ID:
200070911
6.

Bas1 and Ino4 ChIP-seq

(Submitter supplied) Meiotic recombination is initiated by developmentally programmed DNA double-strand breaks (DSBs). In S. cerevisiae, the vast majority of DSBs occur in the nucleosome-depleted regions at gene promoters, where transcription factors (TFs) bind. It has been proposed that TF binding can stimulate DSB formation nearby by modulating local chromatin structure. However, a prior study in TF bas1 mutant suggested that the role of TF binding in determining break formation is complex. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17342
4 Samples
Download data: TXT
Series
Accession:
GSE67912
ID:
200067912
7.

Spo11-oligo mapping in bas1 and ino4 mutants

(Submitter supplied) Meiotic recombination is initiated by developmentally programmed DNA double-strand breaks (DSBs). In S. cerevisiae, the vast majority of DSBs occur in the nucleosome-depleted regions at gene promoters, where transcription factors (TFs) bind. It has been proposed that TF binding can stimulate DSB formation nearby by modulating local chromatin structure. However, a prior study in TF bas1 mutant suggested that the role of TF binding in determining break formation is complex. more...
Organism:
Saccharomyces cerevisiae
Type:
Other
Platform:
GPL17342
9 Samples
Download data: WIG
Series
Accession:
GSE67910
ID:
200067910
8.

Histone 3 lysine 4 trimethylation (H3K4me3) ChIP in bas1 and ino4 mutants

(Submitter supplied) Meiotic recombination is initiated by developmentally programmed DNA double-strand breaks (DSBs). In S. cerevisiae, the vast majority of DSBs occur in the nucleosome-depleted regions at gene promoters, where transcription factors (TFs) bind. It has been proposed that TF binding can stimulate DSB formation nearby by modulating local chromatin structure. However, a prior study in TF bas1 mutant suggested that the role of TF binding in determining break formation is complex. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17342
12 Samples
Download data: TXT
Series
Accession:
GSE67907
ID:
200067907
9.

Meiotic recombination cold spots in chromosomal cohesion sites

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Schizosaccharomyces pombe; Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing; Genome binding/occupancy profiling by genome tiling array
Platforms:
GPL7715 GPL17143
12 Samples
Download data: BAR, BEDGRAPH, CEL, TXT
Series
Accession:
GSE52863
ID:
200052863
10.

Meiotic recombination cold spots in chromosomal cohesion sites [ChIP-Seq]

(Submitter supplied) Meiotic chromosome architecture called “axis-loop structures” and histone modifications have been demonstrated to regulate the Spo11-dependent formation of DNA double-strand breaks (DSBs) that trigger meiotic recombination. Using genome-wide chromatin immunoprecipitation (ChIP) analyses followed by deep sequencing, we compared the genome-wide distribution of the axis protein Rec8 (the kleisin subunit of meiotic cohesin) with that of oligomeric DNA covalently bound to Spo11, indicative of DSB sites. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17143
10 Samples
Download data: BEDGRAPH
Series
Accession:
GSE52862
ID:
200052862
11.

Meiotic recombination cold spots in chromosomal cohesion sites [ChIP-chip]

(Submitter supplied) Meiotic chromosome architecture called “axis-loop structures” and histone modifications have been demonstrated to regulate the Spo11-dependent formation of DNA double-strand breaks (DSBs) that trigger meiotic recombination. Using genome-wide chromatin immunoprecipitation (ChIP) analyses followed by deep sequencing, we compared the genome-wide distribution of the axis protein Rec8 (the kleisin subunit of meiotic cohesin) with that of oligomeric DNA covalently bound to Spo11, indicative of DSB sites. more...
Organism:
Schizosaccharomyces pombe
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL7715
2 Samples
Download data: BAR, CEL, TXT
Series
Accession:
GSE52858
ID:
200052858
12.

Genome-wide binding site of Rec10 and Rec15 during meiosis

(Submitter supplied) Higher-order chromosome structure is assumed to control various DNA-templated reactions in eukaryotes. Meiotic chromosomes implement developed structures called “axes” and “loops”; both are suggested to tether each other, activating Spo11 to catalyze meiotic DNA double-strand breaks (DSBs) at recombination hotspots. We found that the Schizosaccharomyces pombe Spo11 homolog Rec12 and its partners form two distinct subcomplexes, DSBC (Rec6-Rec12-Rec14) and SFT (Rec7-Rec15-Rec24). more...
Organism:
Schizosaccharomyces pombe
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL7715
7 Samples
Download data: BAR, CEL
Series
Accession:
GSE31846
ID:
200031846
13.

Genome wide map of DMC1 in testis of Stag3-/-, Rec8-/- and Stag3-/-Rec8-/- mice.

(Submitter supplied) During mouse meiosis, DNA double-strand breaks (DSBs) are initiated by SPO11 at recombination hotspots (HSs), activated by PRDM9. Although activated HSs are marked by H3K4me3 and H3K36me3 histone modifications at open chromatin, most of the DSB-initiating and repair proteins are associated with the chromosome axis. This study addresses the mechanistic importance of the axis-associated cohesin proteins in DSB formation. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing; Third-party reanalysis
Platforms:
GPL19057 GPL17021
14 Samples
Download data: BED, BEDGRAPH, TXT
Series
Accession:
GSE112110
ID:
200112110
14.

Spp1, a member of Set1 complex, promotes meiotic DSB formation by tethering histone H3K4 methylation sites to chromosome axes

(Submitter supplied) Meiotic DSB, catalyzed by the Spo11 transesterase protein and accessory DSB proteins, form in the nucleosome depleted regions (NDR) at promoters, preferentially those located on the chromosome loops that shape meiotic chromosomes, whereas the DSB proteins are located on chromosome axes at the basis of these loops. Mechanisms bridging these two chromosomal regions for DSB formation have remained elusive. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL4131
7 Samples
Download data: GPR
Series
Accession:
GSE39900
ID:
200039900
15.

Spo11-accessory proteins link DNA double-strand break sites to the chromosome axis in early meiotic recombination

(Submitter supplied) Meiotic recombination between homologous chromosomes initiates via programmed DNA double-strand breaks (DSBs), generated by complexes comprising Spo11 transesterase plus accessory proteins. DSBs arise concomitantly with the development of axial chromosome structures, where the coalescence of axis sites produces linear arrays of chromatin loops. Recombining DNA sequences map to loops, but are ultimately tethered to the underlying axis. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by genome tiling array
Platforms:
GPL7250 GPL7249
34 Samples
Download data: CEL, TXT
Series
Accession:
GSE29860
ID:
200029860
16.

Rec8 guides canonical Spo11 distribution along yeast meiotic chromosomes

(Submitter supplied) Spo11-mediated DNA double strand breaks (DSBs) that initiate meiotic recombination are temporally and spatially controlled. The meiotic cohesin Rec8 has been implicated in regulating DSB formation, but little is known about the features of their interplay. To shed light on this point, we investigated the genome-wide localization of Spo11 in budding yeast during early meiosis by chromatin immunoprecipitation using high-density tiling arrays. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by genome tiling array
Platforms:
GPL1280 GPL347
62 Samples
Download data: CEL, EXP
Series
Accession:
GSE8422
ID:
200008422
17.

Protein Determinants of Meiotic DNA Break Hotspots

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Schizosaccharomyces pombe
Type:
Genome binding/occupancy profiling by genome tiling array
Platforms:
GPL16383 GPL16421
21 Samples
Download data: TXT
Series
Accession:
GSE43122
ID:
200043122
18.

Protein Determinants of Meiotic DNA Break Hotspots (dataset 2)

(Submitter supplied) Meiotic recombination, crucial for proper chromosome segregation and genome evolution, is initiated by programmed DNA double-strand breaks (DSBs) in budding and fission yeasts and likely all sexually reproducing species. In fission yeast, DSBs occur up to several hundred times more frequently at special sites, called hotspots, than in other regions of the genome. What distinguishes hotspots from cold regions is a major unsolved problem, although transcription factors determine some hotspots. more...
Organism:
Schizosaccharomyces pombe
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL16421
16 Samples
Download data: TXT
Series
Accession:
GSE43121
ID:
200043121
19.

Protein Determinants of Meiotic DNA Break Hotspots (dataset 1)

(Submitter supplied) Meiotic recombination, crucial for proper chromosome segregation and genome evolution, is initiated by programmed DNA double-strand breaks (DSBs) in budding and fission yeasts and likely all sexually reproducing species. In fission yeast, DSBs occur up to several hundred times more frequently at special sites, called hotspots, than in other regions of the genome. What distinguishes hotspots from cold regions is a major unsolved problem, although transcription factors determine some hotspots. more...
Organism:
Schizosaccharomyces pombe
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL16383
5 Samples
Download data: TXT
Series
Accession:
GSE43118
ID:
200043118
20.

The landscape of mouse meiotic double-strand break formation, processing and repair

(Submitter supplied) SPO11 generates hundreds of DNA double-strand breaks (DSBs) to initiate meiotic recombination. Heritability and genome stability are shaped by the nonrandom distribution of DSBs, but mechanisms molding this landscape remain poorly understood. Here we exploit genome-wide maps of mouse DSBs at unprecedented nucleotide resolution to uncover previously invisible spatial features of recombination. At fine scale, we reveal a stereotyped hotspot structure––DSBs occur within narrow zones between methylated nucleosomes––and identify relationships between SPO11, chromatin, and the histone methyltransferase PRDM9. more...
Organism:
Mus musculus
Type:
Other
Platform:
GPL17021
5 Samples
Download data: TXT
Series
Accession:
GSE84689
ID:
200084689
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=24|qty=4|blobid=MCID_6709e024c7d3ca20d565aab9|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center