U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Default DNA Methylation is Preceded by Broad, Low-Level Transcription in Fetal Male Germ Cells and Is Inversely Patterned by Dynamic H3K4 Methylation

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by genome tiling array; Methylation profiling by genome tiling array; Expression profiling by high throughput sequencing
Platforms:
GPL16978 GPL13112
63 Samples
Download data: BEDGRAPH, GFF, PAIR, TXT
Series
Accession:
GSE46954
ID:
200046954
2.

Default DNA Methylation is Preceded by Broad, Low-Level Transcription in Fetal Male Germ Cells and Is Inversely Patterned by Dynamic H3K4 Methylation (RNA-Seq)

(Submitter supplied) To understand what dictates the emerging patterns of de novo DNA methylation, we mapped DNA methylation, chromatin, and transcription changes in purified fetal mouse germ cells using MIRA-chip, ChIP-chip, and strand-specific RNA-seq, respectively. De novo methylation occurred without any apparent trigger from preexisting repressing chromatin marks but was preceded by broad, low-level transcription along the entire genome in prospermatogonia. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
4 Samples
Download data: BEDGRAPH, TXT
Series
Accession:
GSE46953
ID:
200046953
3.

Default DNA Methylation is Preceded by Broad, Low-Level Transcription in Fetal Male Germ Cells and Is Inversely Patterned by Dynamic H3K4 Methylation (ChIP-chip and MIRA-chip)

(Submitter supplied) To understand what dictates the emerging patterns of de novo DNA methylation, we mapped DNA methylation, chromatin, and transcription changes in purified fetal mouse germ cells using MIRA-chip, ChIP-chip, and strand-specific RNA-seq, respectively. De novo methylation occurred without any apparent trigger from preexisting repressing chromatin marks but was preceded by broad, low-level transcription along the entire genome in prospermatogonia. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by genome tiling array; Methylation profiling by genome tiling array
Platform:
GPL16978
59 Samples
Download data: GFF, PAIR
Series
Accession:
GSE45836
ID:
200045836
4.

Transcription and chromatin determinants of the rate of de novo DNA methylation in oocytes

(Submitter supplied) We generated genome-wide methylation and transcriptome maps of size-selected, growing oocytes to capture the onset and progression of methylation. We find that the major transitions in the oocyte transcriptome occur well before the de novo methylation phase; nevertheless, transcription level does correlate with rate of methylation. Conversely, timing of methylation of CpG islands (CGIs) correlates inversely with enrichment of histone modifications inhibitory to DNA methylation and dependence on histone 3 lysine-4 demethylases, implicating chromatin remodelling as a major determinant of methylation timing.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Methylation profiling by high throughput sequencing
Platform:
GPL15103
16 Samples
Download data: TXT
Series
Accession:
GSE86297
ID:
200086297
5.

Epigenetic profiling at mouse imprinted gene clusters

(Submitter supplied) Epigenetic profiling of DNA methylation, histone H3 lysine 4 trimethylation and histone H3 lysine 9 trimethylation at imprinted gene clusters in the mouse.
Organism:
Mus musculus
Type:
Methylation profiling by genome tiling array; Genome binding/occupancy profiling by genome tiling array
Platform:
GPL8714
18 Samples
Download data: TXT
Series
Accession:
GSE16588
ID:
200016588
6.

Deep sequencing and de novo assembly of the mouse oocyte transcriptome define the contribution of transcription to the DNA methylation landscape.

(Submitter supplied) We have performed deep RNA-Seq and de novo transcriptome assembly at different stages of mouse oogenesis. This revealed thousands of novel non-annotated genes as well as alternative promoters for ~10% of reference genes expressed in oocytes, a large fraction of which coincide with transposable elements of the MaLR and ERVK families. We defined the oocyte DNA methylation landscape as composed of large-scale hyper- and hypo-methylated domains. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
4 Samples
Download data: TXT
Series
Accession:
GSE70116
ID:
200070116
7.

Dynamic Changes in Histone Modifications Precede de novo DNA Methylation in Oocytes

(Submitter supplied) Erasure and subsequent re-instatement of DNA methylation in the germline, especially at imprinted CpG islands (CGIs), is crucial to embryogenesis in mammals. The mechanisms underlying DNA methylation establishment remain poorly understood, but a number of post-translational modifications of histones are implicated in antagonizing or recruiting the de novo DNA methylation complex. In mouse oogenesis, DNA methylation establishment occurs on a largely unmethylated genome and in non-dividing cells, making it a highly informative model for examining how histone modifications can shape the DNA methylome. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Methylation profiling by high throughput sequencing
Platforms:
GPL13112 GPL15103
35 Samples
Download data: TXT
Series
Accession:
GSE74549
ID:
200074549
8.

Effect of LSD1 depletion on gene expression in oocytes

(Submitter supplied) The objective of the experiment is to compare the transcriptomes of LSD1 knockout (KO) and control oocytes
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
6 Samples
Download data: TXT
Series
Accession:
GSE73803
ID:
200073803
9.

Setdb1 is required for persistence of H3K9me3 and repression of endogenous retroviruses in mouse primordial germ cells

(Submitter supplied) Transcription of endogenous retroviruses (ERVs) is inhibited by de novo DNA methylation during gametogenesis, a process initiated after birth in oocytes and at ~E15.5 in prospermatogonia. Earlier in germline development however, the genome, including most retrotransposons, is progressively demethylated, with young ERVK and ERV1 elements retaining intermediate methylation levels. As DNA methylation reaches a low point in E13.5 primordial germ cells (PGCs) of both sexes, we determined whether retrotransposons are marked by H3K9me3 and H3K27me3 using a recently developed low input ChIP-seq method. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Methylation profiling by high throughput sequencing
Platform:
GPL13112
28 Samples
Download data: BW, TXT
Series
Accession:
GSE60377
ID:
200060377
10.

A tripartite paternally methylated region within the Gpr1-Zdbf2 imprinted domain on mouse chromosome 1 identified by meDIP-on-chip

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens; Mus musculus
Type:
Methylation profiling by genome tiling array
26 related Platforms
76 Samples
Download data: TXT
Series
Accession:
GSE21662
ID:
200021662
11.

Methylation status in human sperm

(Submitter supplied) Genomic imprinting describes the expression of a subset of mammalian genes from one parental chromosome. The parent-of-origin specific expression of imprinted genes relies on DNA methylation of CpG-dinucleotides at differentially methylated regions (DMRs) during gametogenesis. We identified the paternally methylated DMR at human chromosome 2 near the imprinted ZDBF2 gene using a methylated-DNA immunoprecipitation-on-chip (meDIP-on-chip) method applied to DNA from sperm.
Organism:
Homo sapiens
Type:
Methylation profiling by genome tiling array
Platform:
GPL9641
1 Sample
Download data: TXT
Series
Accession:
GSE18178
ID:
200018178
12.

Methylation status in AG- and PG-derived cells and sperm

(Submitter supplied) Genomic imprinting describes the expression of a subset of mammalian genes from one parental chromosome. The parent-of-origin specific expression of imprinted genes relies on DNA methylation of CpG-dinucleotides at differentially methylated regions (DMRs) during gametogenesis. We identified the paternally methylated DMRs at mouse chromosome 1 near the imprinted Zdbf2 gene using a methylated-DNA immunoprecipitation-on-chip (meDIP-on-chip) method applied to DNA from parthenogenetic (PG)- and androgenetic (AG)-derived cells and sperm. more...
Organism:
Mus musculus
Type:
Methylation profiling by genome tiling array
25 related Platforms
75 Samples
Download data: TXT
Series
Accession:
GSE18126
ID:
200018126
13.

Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below. DNA methylation is an epigenetic modification associated with transcriptional repression of promoters and is essential for mammalian development. Establishment of DNA methylation is mediated by the de novo DNA methyltransferases DNMT3A and DNMT3B, whereas DNMT1 ensures maintenance of methylation through replication. Absence of these enzymes is lethal, and somatic mutations in these genes have been associated with several human diseases. more...
Organism:
Mus musculus
Type:
Methylation profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL13112 GPL16417
21 Samples
Download data: TAB, WIG
Series
Accession:
GSE57413
ID:
200057413
14.

Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation [ChIP-Seq]

(Submitter supplied) DNA methylation is an epigenetic modification associated with transcriptional repression of promoters and is essential for mammalian development. Establishment of DNA methylation is mediated by the de novo DNA methyltransferases DNMT3A and DNMT3B, whereas DNMT1 ensures maintenance of methylation through replication. Absence of these enzymes is lethal, and somatic mutations in these genes have been associated with several human diseases. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13112
15 Samples
Download data: WIG
Series
Accession:
GSE57412
ID:
200057412
15.

Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation [Bisulfite-Seq]

(Submitter supplied) DNA methylation is an epigenetic modification associated with transcriptional repression of promoters and is essential for mammalian development. Establishment of DNA methylation is mediated by the de novo DNA methyltransferases DNMT3A and DNMT3B, whereas DNMT1 ensures maintenance of methylation through replication. Absence of these enzymes is lethal, and somatic mutations in these genes have been associated with several human diseases. more...
Organism:
Mus musculus
Type:
Methylation profiling by high throughput sequencing
Platforms:
GPL13112 GPL16417
6 Samples
Download data: TAB
Series
Accession:
GSE57411
ID:
200057411
16.

In vivo targeting of de novo DNA methylation by histone modifications in yeast and mouse

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Saccharomyces cerevisiae; Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Methylation profiling by high throughput sequencing
Platforms:
GPL13112 GPL13821
37 Samples
Download data: BIGWIG, WIG
Series
Accession:
GSE66911
ID:
200066911
17.

In vivo targeting of de novo DNA methylation by histone modifications in yeast and mouse (ChIP-Seq mouse)

(Submitter supplied) Methylation of cytosines (5meC) is a widespread heritable DNA modification. During mammalian development, two global demethylation events are followed by waves of de novo DNA methylation. In vivo mechanisms of DNA methylation establishment are largely uncharacterized. Here we use Saccharomyces cerevisiae as a system lacking DNA methylation to define the chromatin features influencing the activity of the murine DNMT3B. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13112
2 Samples
Download data: WIG
Series
Accession:
GSE66910
ID:
200066910
18.

In vivo targeting of de novo DNA methylation by histone modifications in yeast and mouse (ChIP-Seq yeast)

(Submitter supplied) Methylation of cytosines (5meC) is a widespread heritable DNA modification. During mammalian development, two global demethylation events are followed by waves of de novo DNA methylation. In vivo mechanisms of DNA methylation establishment are largely uncharacterized. Here we use Saccharomyces cerevisiae as a system lacking DNA methylation to define the chromatin features influencing the activity of the murine DNMT3B. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13821
7 Samples
Download data: BIGWIG
Series
Accession:
GSE66909
ID:
200066909
19.

In vivo targeting of de novo DNA methylation by histone modifications in yeast and mouse (RNA-Seq)

(Submitter supplied) Methylation of cytosines (5meC) is a widespread heritable DNA modification. During mammalian development, two global demethylation events are followed by waves of de novo DNA methylation. In vivo mechanisms of DNA methylation establishment are largely uncharacterized. Here we use Saccharomyces cerevisiae as a system lacking DNA methylation to define the chromatin features influencing the activity of the murine DNMT3B. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13821
5 Samples
Download data: BIGWIG
Series
Accession:
GSE66908
ID:
200066908
20.

In vivo targeting of de novo DNA methylation by histone modifications in yeast and mouse (Mnase-Seq)

(Submitter supplied) Methylation of cytosines (5meC) is a widespread heritable DNA modification. During mammalian development, two global demethylation events are followed by waves of de novo DNA methylation. In vivo mechanisms of DNA methylation establishment are largely uncharacterized. Here we use Saccharomyces cerevisiae as a system lacking DNA methylation to define the chromatin features influencing the activity of the murine DNMT3B. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13821
4 Samples
Download data: WIG
Series
Accession:
GSE66907
ID:
200066907
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=4|blobid=MCID_667164e9909a3d46adf8ff5a|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center