U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Search results

Items: 1 to 20 of 2953

1.

Axolotl mandible regeneration occurs through mechanical gap closure and a shared regenerative program with the limb

(Submitter supplied) The mandible plays an essential part in human life and, thus, defects in this structure can dramatically impair the quality of life in patients. Axolotls, unlike humans, are capable of regenerating their lower jaws; however, the underlying mechanisms and their similarity to those in limb regeneration are unknown. In this work, we used morphological, histological, and transcriptomic approaches to analyze the regeneration of lateral resection defects in the axolotl mandible. more...
Organism:
Ambystoma mexicanum
Type:
Expression profiling by high throughput sequencing
Platform:
GPL27159
8 Samples
Download data: TXT
Series
Accession:
GSE271056
ID:
200271056
2.

Retinoic acid breakdown is required for proximodistal positional identity during axolotl limb regeneration

(Submitter supplied) Regenerating limbs retain their proximodistal (PD) positional identity following amputation. This positional identity is encoded genetically by PD patterning genes, which instruct blastema cells to regenerate the appropriate PD limb segment. Retinoic acid (RA) is known to specify proximal limb identity, but how RA concentration is established in the blastema is unknown. Here, we show that RA breakdown via CYP26B1 is essential for determining the RA concentration within blastemas. more...
Organism:
Ambystoma mexicanum
Type:
Expression profiling by high throughput sequencing
Platform:
GPL30838
12 Samples
Download data: TXT
Series
Accession:
GSE272731
ID:
200272731
3.

Multi-species atlas resolves an axolotl limb development and regeneration paradox

(Submitter supplied) Humans and other tetrapods are considered to require apical-ectodermal-ridge, AER, cells for limb development, and AER-like cells are suggested to be re-formed to initiate limb regeneration. Paradoxically, the presence of AER in the axolotl, the primary regeneration model organism, remains controversial. Here, by leveraging a single-cell transcriptomics-based multi-species atlas, composed of axolotl, human, mouse, chicken, and frog cells, we first established that axolotls contain cells with AER characteristics. more...
Organism:
Ambystoma mexicanum
Type:
Other
Platform:
GPL27159
1 Sample
Download data: CSV, JPG, JSON, MTX, PNG, TSV
Series
Accession:
GSE243225
ID:
200243225
4.

Gene expression of senescent and non-senescent AL1 cells

(Submitter supplied) Axolotl limb regeneration proceeds through the formation of a blastema, a mound of progenitor cells that accumulate at the end of the amputated stump. These progenitor cells expand and later undergo patterning to regenerate the missing limb, restoring both form and function. A subset of cells within the blastema become senescent, a state of permanent growth arrest. Here, we address the functional relevance of cellular senescence to axolotl limb regeneration, through a combination of gain- and loss-of-function assays. more...
Organism:
Ambystoma mexicanum
Type:
Expression profiling by high throughput sequencing
Platform:
GPL27159
6 Samples
Download data: TSV
Series
Accession:
GSE206237
ID:
200206237
5.

Single-cell RNA profiling of blastemal senescent cells

(Submitter supplied) Axolotl limb regeneration proceeds through the formation of a blastema, a mound of progenitor cells that accumulate at the end of the amputated stump. These progenitor cells expand and later undergo patterning to regenerate the missing limb, restoring both form and function. A subset of cells within the blastema become senescent, a state of permanent growth arrest. Here, we address the functional relevance of cellular senescence to axolotl limb regeneration, through a combination of gain- and loss-of-function assays. more...
Organism:
Ambystoma mexicanum
Type:
Expression profiling by high throughput sequencing
Platform:
GPL27159
2066 Samples
Download data: TSV
Series
Accession:
GSE206235
ID:
200206235
6.

Gene expression profile of senescent and non-senescent cells from regenerating blastemas

(Submitter supplied) Axolotl limb regeneration proceeds through the formation of a blastema, a mound of progenitor cells that accumulate at the end of the amputated stump. These progenitor cells expand and later undergo patterning to regenerate the missing limb, restoring both form and function. A subset of cells within the blastema become senescent, a state of permanent growth arrest. Here, we address the functional relevance of cellular senescence to axolotl limb regeneration, through a combination of gain- and loss-of-function assays. more...
Organism:
Ambystoma mexicanum
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24679
22 Samples
Download data: TSV
Series
Accession:
GSE206234
ID:
200206234
7.

Evolutionarily divergent mTOR remodels translatome for tissue regeneration

(Submitter supplied) An outstanding mystery in biology is why some species, such as the axolotl, can regenerate tissues whereas mammals cannot1. Here, we demonstrate that rapid activation of protein synthesis is a unique feature of the injury response critical for limb regeneration in the axolotl (Ambystoma mexicanum). By applying polysome sequencing, we identify hundreds of transcripts, including antioxidants and ribosome components that are selectively activated at the level of translation from pre-existing messenger RNAs in response to injury. more...
Organism:
Ambystoma mexicanum
Type:
Expression profiling by high throughput sequencing; Other
Platform:
GPL30838
18 Samples
Download data: TXT
Series
Accession:
GSE185593
ID:
200185593
8.

Chromatin states at homeoprotein loci distinguish axolotl limb segments prior to regeneration [RNA-seq]

(Submitter supplied) The salamander limb regenerates only the missing portion. Each limb segment can only form segments equivalent to- or more distal to their own identity, relying on a property termed “positional information”. How positional information is encoded in limb cells has been unknown. By cell-type-specific chromatin profiling of upper arm, lower arm, and hand, we found segment-specific levels of histone H3K27me3 at limb homeoprotein gene loci but not their upstream regulators, constituting an intrinsic segment information code. more...
Organism:
Ambystoma mexicanum
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL32846 GPL27159
16 Samples
Download data: BW
Series
Accession:
GSE217593
ID:
200217593
9.

Chromatin states at homeoprotein loci distinguish axolotl limb segments prior to regeneration [ATAC-seq]

(Submitter supplied) The salamander limb regenerates only the missing portion. Each limb segment can only form segments equivalent to- or more distal to their own identity, relying on a property termed “positional information”. How positional information is encoded in limb cells has been unknown. By cell-type-specific chromatin profiling of upper arm, lower arm, and hand, we found segment-specific levels of histone H3K27me3 at limb homeoprotein gene loci but not their upstream regulators, constituting an intrinsic segment information code. more...
Organism:
Ambystoma mexicanum
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL22800 GPL27159
34 Samples
Download data: BW
Series
Accession:
GSE217592
ID:
200217592
10.

Chromatin states at homeoprotein loci distinguish axolotl limb segments prior to regeneration [Cut&Tag]

(Submitter supplied) The salamander limb regenerates only the missing portion. Each limb segment can only form segments equivalent to- or more distal to their own identity, relying on a property termed “positional information”. How positional information is encoded in limb cells has been unknown. By cell-type-specific chromatin profiling of upper arm, lower arm, and hand, we found segment-specific levels of histone H3K27me3 at limb homeoprotein gene loci but not their upstream regulators, constituting an intrinsic segment information code. more...
Organism:
Ambystoma mexicanum
Type:
Other
Platform:
GPL27159
63 Samples
Download data: BW
Series
Accession:
GSE217591
ID:
200217591
11.

Evi5 is required for Xenopus limb and tail regeneration

(Submitter supplied) Amphibians such as the salamanders and the African clawed frog Xenopus are great models for regeneration studies because they can fully regenerate their lost organs. While axolotl can regenerate damaged organs throughout its lifetime, Xenopus has a limited regeneration capacity after metamorphosis. The ecotropic viral integrative factor 5 (Evi5), a cell-cycle-regulated protein that prevents cells from entering mitosis prematurely, is of great interest for it is highly upregulated in the limb blastema of axolotls, but its expression level remains unchanged in the fibroblastema of postmetamorphic frogs. more...
Organism:
Xenopus laevis
Type:
Expression profiling by high throughput sequencing
Platform:
GPL28901
6 Samples
Download data: XLS
Series
Accession:
GSE218034
ID:
200218034
12.

RNA_Seq analysis of localization along animal-vegetal axis of Danio rerio

(Submitter supplied) Asymmetrical localization of biomolecules inside the egg, results in uneven cell division and two daughter cells with different fates. This phenomenon is required for the establishment of many biological processes and is particularly responsible for the great variety of cell types formed during developmentand requires strict timing and positional control. The key molecules determining the body plan are the mRNAs, of which many examples have already been discovered to be asymmetrically localized during oogenesis and embryogenesis in both the amphibian and fish models. more...
Organism:
Danio rerio
Type:
Expression profiling by high throughput sequencing
Platform:
GPL20828
17 Samples
Download data: TXT
Series
Accession:
GSE166917
ID:
200166917
13.

RNA_Seq analysis of localization along animal-vegetal axis of axolotl (Ambystoma mexicanum)

(Submitter supplied) Asymmetrical localization of biomolecules inside the egg, results in uneven cell division and two daughter cells with different fates. This phenomenon is required for the establishment of many biological processes and is particularly responsible for the great variety of cell types formed during developmentand requires strict timing and positional control. The key molecules determining the body plan are the mRNAs, of which many examples have already been discovered to be asymmetrically localized during oogenesis and embryogenesis in both the amphibian and fish models. more...
Organism:
Ambystoma mexicanum
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24679
20 Samples
Download data: TXT
Series
Accession:
GSE166916
ID:
200166916
14.

Comparative analysis of genome-scale, base-resolution DNA methylation profiles across 580 animal species

(Submitter supplied) We mapped DNA methylation in 580 animal species (535 vertebrates, 45 invertebrates), resulting in 2443 genome-scale, base-resolution DNA methylation profiles of primary tissue samples from various organs. Reference-genome independent analysis of this comprehensive dataset defined a “genomic code” of DNA methylation, which allowed us to predict global and locus-specific DNA methylation from the DNA sequence within and across species. more...
Organism:
Octopus vulgaris; Lytechinus variegatus; Squalus acanthias; Mustelus canis; Cyprinus carpio; Salmo salar; Salmo trutta; Pollachius virens; Zoarces americanus; Ambystoma; Iguanidae; Tiliqua rugosa; Natrix tessellata; Crotalus; Dendrocygna viduata; Charadriidae; Ciconia ciconia; Gallus; Coturnix coturnix; Parus major; Sarcophilus; Macropus; Tupaia; Lemur; Papio; Ailurus fulgens; Mustelidae; Lutra lutra; Mustela; Panthera onca; Panthera tigris; Rhinocerotidae; Cervus elaphus; Capra aegagrus; Connochaetes; Lepus europaeus; Marmota; Acomys; Mus musculus; Hystricidae; Melopsittacus; Tamias; Magallana gigas; Molgula citrina; Botryllus schlosseri; Heleophrynidae; Dama dama; Yangochiroptera; Leontopithecus; Pelecanus; Hippotragus equinus; Ostrea edulis; Cricetomyinae; Uromastyx; Cynictis; Glis glis; Oplurus; Bothriechis schlegelii; Brachylophus; Passer domesticus; Jaculus; Sauromalus; Python molurus; Acanthosaura; Shinisaurus crocodilurus; Plegadis falcinellus; Eliomys quercinus; Corvus corax; Coliiformes; Agapornis personatus; Loriculus galgulus; Leptailurus; Lepus timidus; Astrochelys radiata; Tragelaphus angasii; Sebastes constellatus; Sebastolobus alascanus; Paracanthurus hepatus; Corvus frugilegus; Dascyllus aruanus; Coryphaenoides acrolepis; Testudo hermanni; Paracirrhites forsteri; Scyliorhinus retifer; Nardoa novaecaledoniae; Chaetodon lineolatus; Chaetodon lunula; Buteo lagopus; Batoidea; Loweina terminata; Penaeus; Caiman yacare; Cacatua alba; Paroedura picta; Rhacophorus reinwardtii; Recurvirostra avosetta; Irena puella; Bycanistes bucinator; Elops affinis; Philomachus; Zamenis longissimus; Ascidiella aspersa; Tamiops; Amblyglyphidodon leucogaster; Rhinecanthus aculeatus; Hemilepidotus jordani; Triglops scepticus; Oxylebius pictus; Tockus flavirostris; Taurotragus; Cephalopholis miniata; Aotidae; Sebastes chrysomelas; Pterocaesio marri; Notamacropus parma; Lamprotornis chalcurus; Boltenia ovifera; Rhabdamia gracilis; Chrysopelea; Pristigenys alta; Salvelinus umbla; Holothuria cinerascens; Grus paradisea; Lyrurus tetrix; Ammodytes dubius; Cryptacanthodes maculatus; Prionotus carolinus; Ostorhinchus moluccensis; Apostichopus parvimensis; Cyanoloxia brissonii; Leptoptilos crumenifer; Tockus nasutus; Mya arenaria; Loligo vulgaris; Strongylocentrotus droebachiensis; Holothuria; Ciona intestinalis; Lophius piscatorius; Hemitripterus americanus; Cyclopterus lumpus; Thunnus albacares; Testudinidae; Varanus; Gekkonidae; Boa constrictor; Struthio camelus; Sturnus vulgaris; Phoenicopteriformes; Ara; Ara ararauna; Aptenodytes patagonicus; Petauridae; Dasypodidae; Scandentia; Varecia; Saguinus; Macaca sylvanus; Papio hamadryas; Theropithecus gelada; Canis lupus familiaris; Nasua; Martes foina; Mustela putorius; Felis silvestris; Phocidae; Equus; Equus zebra; Sus scrofa; Bison bonasus; Capra; Apodemus sylvaticus; Lagostomus maximus; Myocastor coypus; Saccoglossus kowalevskii; Psittacus; Castoridae; Styela montereyensis; Ardea; Buteo; Buteo buteo; Balearica pavonina; Grus japonensis; Corvus; Bubo bubo; Carcharias taurus; Axis axis; Vicugna; Hippoglossoides elassodon; Trachemys scripta elegans; Gypaetus; Morone saxatilis; Hippoglossoides platessoides; Capromys pilorides; Petaurus breviceps; Suricata; Hemitragus; Chloris chloris; Lepas anatifera; Chamaeleonidae; Lutjanus mahogoni; Circus cyaneus; Pithecia pithecia; Patiria miniata; Geochelone; Cyclura; Apodemus flavicollis; Sciurus vulgaris; Centropomus robalito; Cyclura cornuta; Cornufer guentheri; Antidorcas; Antilope; Kobus leche; Agapornis canus; Agapornis lilianae; Agapornis taranta; Varanus gouldii; Scincidae; Sebastes atrovirens; Sebastes caurinus; Sebastes hopkinsi; Sebastes miniatus; Geoemyda spengleri; Mullus surmuletus; Pomatomus saltator; Corucia zebrata; Picus viridis; Nothobranchius furzeri; Fromia; Asio otus; Strix aluco; Trioceros jacksonii; Theloderma; Nectariniidae; Ploceus cucullatus; Spinus spinus; Ctenochaetus striatus; Urophycis tenuis; Caloenas nicobarica; Euplectes; Coracias garrulus; Pisaster giganteus; Pleurogrammus monopterygius; Glyptocephalus zachirus; Clavelina picta; Mungos mungo; Accipiter nisus; Fistularia commersonii; Cygnus cygnus; Anoplopoma fimbria; Uromastyx ocellata; Stichopus chloronotus; Trachyphonus erythrocephalus; Coris gaimard; Eumyias panayensis; Pytilia melba; Potamochoerus porcus; Ecteinascidia turbinata; Pachyuromys; Holothuria atra; Sebastes semicinctus; Podothecus accipenserinus; Falco cherrug; Pitta moluccensis; Camelus ferus; Ptilinopus pulchellus; Chiroxiphia pareola; Sphoeroides maculatus; Astrochelys yniphora; Boltenia echinata; Echinarachnius parma; Alitta succinea; Bodianus diana; Cantherhines pardalis; Cheilodipterus quinquelineatus; Tetrastes bonasia; Parapercis xanthozona; Lumpenus lampretaeformis; Pseudanthias ventralis; Xenagama wilmsi; Loweina rara; Coracias cyanogaster; Vanellus armatus; Oxycercichthys veliferus; Onuxodon fowleri; Cirrhilabrus roseafascia; Copsychus malabaricus; Hypanus americanus; Illex illecebrosus; Strongylocentrotus purpuratus; Branchiostoma floridae; Galeocerdo cuvier; Callorhinchus milii; Clupea harengus; Salvelinus alpinus; Xiphias gladius; Ambystoma mexicanum; Heloderma; Casuarius casuarius; Rhea americana; Anas platyrhynchos; Ciconiidae; Columbidae; Accipiter gentilis; Circus aeruginosus; Acryllium vulturinum; Gallus gallus; Perdix perdix; Phasianus colchicus; Coturnix delegorguei; Spheniscus humboldti; Pteropus; Callithrix jacchus; Saguinus oedipus; Saguinus imperator; Macaca; Colobus polykomos; Pongo; Canis lupus; Panthera leo; Panthera pardus; Puma concolor; Tapirus; Sus scrofa domesticus; Camelus dromedarius; Lama glama; Tragulus javanicus; Capreolus capreolus; Rangifer tarandus; Ovis aries; Kobus; Capricornis; Oryctolagus cuniculus; Spermophilus; Cricetus; Rattus norvegicus; Rattus rattus; Amazona; Lynx lynx; Nymphicus hollandicus; Tinca tinca; Dolichotis patagonum; Incilius alvarius; Chauna torquata; Rollulus; Capromyidae; Vipera berus; Scopus umbretta; Rupicapra rupicapra; Pythonidae; Pelecanus crispus; Cucumaria frondosa; Coccothraustes; Polychrus marmoratus; Cygnus melancoryphus; Erythrura; Phodopus campbelli; Neoniphon sammara; Eunectes; Haliaeetus leucocephalus; Cariamidae; Macaca silenus; Musophagidae; Garrulus glandarius; Leontopithecus chrysomelas; Upupa epops; Paralichthys dentatus; Nanger dama; Myoxocephalus octodecemspinosus; Tragelaphus spekii; Sebastes ovalis; Hypselecara coryphaenoides; Spatula querquedula; Equus asinus asinus; Elephas maximus indicus; Falco tinnunculus; Tetrao urogallus; Testudo kleinmanni; Hoplobatrachus tigerinus; Musophaga; Osteoglossum bicirrhosum; Ptilinopus; Athene noctua; Polypedates otilophus; Correlophus ciliatus; Rhinogobiops nicholsii; Otaria; Leucoraja ocellata; Pycnonotus barbatus; Psarisomus dalhousiae; Cynoscion regalis; Acanthurus triostegus; Alectis ciliaris; Lethrinus atkinsoni; Hippoglossina oblonga; Scophthalmus aquosus; Gallicolumba; Amandava subflava; Furcifer pardalis; Choerodon fasciatus; Coronella austriaca; Thyonella gemmata; Neurergus; Diodon hystrix; Canis lupus lycaon; Euplectes orix; Chromis punctipinnis; Haemulon flavolineatum; Semicossyphus pulcher; Dinemellia; Hemisphaeriodon; Halocynthia pyriformis; Phloeomys; Cuora mouhotii; Merops apiaster; Pseudanthias; Ambystoma andersoni; Malacochersus; Cyanoliseus patagonus; Ostorhinchus aureus; Zaprora silenus; Platax teira; Saimiriinae; Pseudomonacanthus peroni; Sebastes norvegicus; Dracaena guianensis; Aonyx cinereus; Merops bullockoides; Ammodytes hexapterus; Sufflamen chrysopterum; Cyclopsitta diophthalma; Centropyge heraldi; Parupeneus spilurus; Vermilingua; Folivora; Lethenteron camtschaticum; Callocephalon fimbriatum; Ophiopteris papillosa; Ophiothrix spiculata; Rhyticeros narcondami; Ostorhinchus rueppellii; Cheilopogon californicus; Riftia pachyptila; Homarus americanus; Pisaster brevispinus; Leucoraja erinaceus; Negaprion brevirostris; Danio rerio; Esox lucius; Gadus morhua; Myzopsetta ferruginea; Chelydra serpentina; Emydidae; Graptemys; Varanus exanthematicus; Naja; Vipera ammodytes; Dromaius novaehollandiae; Columba livia; Falco peregrinus; Haliaeetus albicilla; Serinus; Phalacrocorax carbo; Macropodidae; Erinaceidae; Leontocebus fuscicollis; Saguinus mystax; Cercopithecus; Vulpes vulpes; Ursus; Ursus arctos; Procyon lotor; Meles meles; Felis catus; Tayassuidae; Cervidae; Cervus nippon; Muntiacus; Ammotragus; Bos; Boselaphus tragocamelus; Bubalus; Cricetinae; Caviidae; Hydrochoerus hydrochaeris; Heterocephalus; Macroscelidea; Macroscelides proboscideus; Dolichotis; Duttaphrynus melanostictus; Corvus corone; Strigiformes; Vicugna pacos; Yinpterochiroptera; Acinonyx; Colobus guereza; Glyptocephalus cynoglossus; Erethizon; Nyctereutes; Trachemys; Stenotomus chrysops; Zosteropidae; Strix uralensis; Hippotragus; Vidua paradisaea; Cebinae; Phascolarctos cinereus; Leiocephalus; Carollia perspicillata; Milvus milvus; Cynomys; Psammomys obesus; Sylvia atricapilla; Python regius; Pogona barbata; Aquila heliaca; Eurypygidae; Jacanidae; Lissemys punctata; Ecsenius; Agapornis; Mimus polyglottos; Canis aureus; Tiliqua scincoides; Sebastes mystinus; Sebastes paucispinis; Ariopsis felis; Abronia anzuetoi; Eudyptes chrysocome; Pomacentrus coelestis; Terrapene; Lampropeltis; Embiotoca jacksoni; Geronticus eremita; Fromia indica; Ducula bicolor; Rhinoptera bonasus; Probosciger aterrimus; Monacanthidae; Halichoeres trimaculatus; Phyllopteryx taeniolatus; Tringa totanus; Chloropsis; Tockus deckeni; Chamaeleo calyptratus; Gymnothorax moringa; Centropristis striata; Erpeton; Laemanctus; Labroides bicolor; Cuora mccordi; Amazona agilis; Histrio histrio; Zenopsis conchifer; Uraeginthus bengalus; Bathymaster signatus; Pseudobalistes fuscus; Trachemys scripta scripta; Sebastes borealis; Lutjanus quinquelineatus; Lepidopsetta polyxystra; Oxycheilinus digramma; Giraffa giraffa; Pleoticus muelleri; Ovis orientalis; Geopelia placida; Photoblepharon palpebratum; Calyptocephallela gayi; Scolopsis bilineata; Atherinomorus vaigiensis; Leptoclinus maculatus; Coris caudimacula; Gadus chalcogrammus; Doryteuthis pealeii; Crocodylia; Ophioderma panamensis; Notamacropus rufogriseus; Cirrhilabrus lineatus; Lonchura oryzivora; Tockus alboterminatus
Type:
Methylation profiling by high throughput sequencing
580 related Platforms
3023 Samples
Download data: BED
Series
Accession:
GSE195869
ID:
200195869
15.

Construction of the axolotl cell landscape using combinatorial hybridization sequencing at single cell resolution [scRNA-seq]

(Submitter supplied) Here, we developed a single-cell sequencing method based on combinatorial hybridization to generate a tissue-based transcriptomic landscape of the neotenic and metamorphosed axolotl. We performed gene expression profiling of over 1 million single cells across 19 tissues to construct the first adult axolotl cell landscape. Comparison of single-cell transcriptomes between the tissues of neotenic and metamorphosed axolotls revealed the heterogeneity of non-immune parenchymal cells in different tissues and established their regulatory network. more...
Organism:
Ambystoma mexicanum; Homo sapiens; Mus musculus
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL26363 GPL30541
615 Samples
Download data: TXT, XLSX
Series
Accession:
GSE201446
ID:
200201446
16.

Construction of the axolotl cell landscape using combinatorial hybridization sequencing at single cell resolution [bulk RNA-seq]

(Submitter supplied) We adopted a combinatorial hybridization based single-cell RNA-seq method to generate tissue based transcriptome atlas of adult axolotl and whole organism transcriptome atlas of larva axolotl. Gene expression profiling of over 1million single cells across 19 organs constructed the first adult axolotl cell atlas. Comparison between neoteny and metamorphosis organs revealed transcriptome heterogeneity of structural cells in different tissues and a sophisticated regulatory network. more...
Organism:
Ambystoma mexicanum
Type:
Expression profiling by high throughput sequencing
Platform:
GPL30540
61 Samples
Download data: TXT
Series
Accession:
GSE182746
ID:
200182746
17.

Regenerating axolotl retinas regrow diverse cell types with modulation by Notch signaling and reconnect to the brain

(Submitter supplied) We examined uninjured and regenerating axolotl salamander retinas, including their transcriptional profile. We report that at 27 days after a retinectomy (early-mid regeneration), regenerating axolotl retinas exhibit downregulation of genes associated with neuronal networks but upregulation of genes associated with angiogenesis and the extracellular matrix. We also report differential expression of two Notch pathway effector genes, Hes1 and Hes5.
Organism:
Ambystoma mexicanum
Type:
Expression profiling by high throughput sequencing
Platform:
GPL31860
6 Samples
Download data: TXT
Series
Accession:
GSE200423
ID:
200200423
18.

Regulation of stem cell identity by miR-200a during spinal cord regeneration

(Submitter supplied) Salamanders have the remarkable ability to functionally regenerate after spinal cord transection. In response to injury, GFAP+ glial cells in the axolotl spinal cord proliferate and migrate to replace the missing neural tube and create a permissive environment for axon regeneration. In this paper we show that miR-200a acts to repress expression of Brachyury in sox2 positive progenitor cells in the axoltol spinal cord after spinal cord injury but after tail amputation when multiple tissue types must be regenerated then mir-200a is downregualted allowing progenitor cells in the spinal cord to naturally become bipotent progenitors which can give rise to muscle and neural cell types. more...
Organism:
Ambystoma mexicanum
Type:
Expression profiling by high throughput sequencing
Platform:
GPL22800
12 Samples
Download data: XLS
Series
Accession:
GSE196098
ID:
200196098
19.

Tig1 regulates proximo-distal identity during salamander limb regeneration

(Submitter supplied) Salamander limb regeneration is an accurate process which gives rise exclusively to the missing structures, irrespective of the amputation level. This suggests that cells in the stump have an awareness of their spatial location, a property termed ‘positional identity’. Little is known about how positional identity is encoded, in salamanders or other biological systems. Through single-cell RNAseq analysis, we identified Tig1/RARRES1 as a potential determinant of proximal identity. more...
Organism:
Ambystoma mexicanum
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24679
18 Samples
Download data: TXT
Series
Accession:
GSE184948
ID:
200184948
20.

HDAC Inhibitor Titration of Transcription and Axolotl Tail Regeneration

(Submitter supplied) 10X transcriptome sequencing of control and romidepsin treated embryonic tail regenerates.
Organism:
Ambystoma mexicanum
Type:
Expression profiling by high throughput sequencing
Platform:
GPL27159
3 Samples
Download data: H5, MTX, TSV
Series
Accession:
GSE183645
ID:
200183645
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=((Ambystoma%20tigrinum%20or%20Tiger%20salamander))%20AND%20gds_sra[filter]|query=1|qty=586|blobid=MCID_67368b705ff35f4f671c81d0|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Search details

See more...

Recent activity

Support Center