U.S. flag

An official website of the United States government

Format
Items per page

Send to:

Choose Destination

Links from Gene

Items: 10

1.

Noonan syndrome 1

Noonan syndrome (NS) is characterized by characteristic facies, short stature, congenital heart defect, and developmental delay of variable degree. Other findings can include broad or webbed neck, unusual chest shape with superior pectus carinatum and inferior pectus excavatum, cryptorchidism, varied coagulation defects, lymphatic dysplasias, and ocular abnormalities. Although birth length is usually normal, final adult height approaches the lower limit of normal. Congenital heart disease occurs in 50%-80% of individuals. Pulmonary valve stenosis, often with dysplasia, is the most common heart defect and is found in 20%-50% of individuals. Hypertrophic cardiomyopathy, found in 20%-30% of individuals, may be present at birth or develop in infancy or childhood. Other structural defects include atrial and ventricular septal defects, branch pulmonary artery stenosis, and tetralogy of Fallot. Up to one fourth of affected individuals have mild intellectual disability, and language impairments in general are more common in NS than in the general population. [from GeneReviews]

MedGen UID:
1638960
Concept ID:
C4551602
Disease or Syndrome
2.

Dabrafenib response

Dabrafenib is a kinase inhibitor used in the treatment of individuals with unresectable or metastatic melanoma, metastatic non-small cell lung cancer (NSCLC), locally advanced or metastatic anaplastic thyroid cancer (ATC), pediatric low-grade glioma (LGG), and other unresectable or metastatic solid tumors with specific BRAF variants. Dabrafenib can be used as a single agent to treat melanoma with the BRAF valine 600 to glutamic acid (V600E) variant or in combination with the MEK inhibitor trametinib to treat multiple tumor types with BRAF V600E or V600K variants.The BRAF protein is an intracellular kinase in the mitogen-activated protein kinases (MAPK) pathway. Functionally, BRAF regulates essential cell processes such as cell growth, division, differentiation, and apoptosis. The gene BRAF is also a proto-oncogene—when mutated, it transforms normal cells into cancerous cells. Variation in the kinase domain of BRAF is associated with various cancers. The most common BRAF variant, V600E, constitutively activates the kinase and causes cell proliferation in the absence of growth factors that would usually be needed. The V600E variant is detected in approximately 50% of melanomas, 25% of ATC, 2% of NSCLC, and 20% of pediatric LGGs. The FDA-approved label for dabrafenib states that the presence of BRAF mutation in tumor specimens (V600E for dabrafenib monotherapy; V600E or V600K for dabrafenib plus trametinib) should be confirmed using an FDA-approved test before starting treatment with dabrafenib. Dabrafenib is not indicated for the treatment of individuals with wild-type BRAF tumors, or the treatment of colorectal cancer due to intrinsic resistance to BRAF inhibitor monotherapy. The label also states that individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency should be monitored for signs of hemolytic anemia while taking dabrafenib (1). However, it is important to note that an independent literature review by the Clinical Pharmacogenetics Implementation Consortium found no publications to support or refute this risk and thus issued no guidance for G6PD deficiency and dabrafenib therapy. [from Medical Genetics Summaries]

MedGen UID:
893731
Concept ID:
CN239586
Sign or Symptom
3.

Vemurafenib response

Vemurafenib is a kinase inhibitor used in the treatment of patients with unresectable or metastatic melanoma with the BRAF V600E variant. BRAF is an intracellular kinase in the mitogen-activated protein kinases (MAPK) pathway. BRAF is involved in regulating important cell functions such as cell growth, division, differentiation, and apoptosis. BRAF is also a proto-oncogene—when mutated it has the ability to transform normal cells into cancerous cells. Variation in the kinase domain of BRAF have been associated with various cancers. The most common BRAF variant, V600E, constitutively activates the kinase, and causes cell proliferation in the absence of growth factors that would normally be required. The V600E variant is detected in approximately 50% of melanomas. The FDA-approved drug label for vemurafenib states that the presence of BRAF V600E mutation in tumor specimens should be confirmed, using an FDA-approved test, before starting treatment with vemurafenib. The label also states that vemurafenib is not indicated for treatment of patients with wild-type BRAF melanoma. Variations in NRAS, also an oncogene, are found in up to 30% of all malignancies and in approximately 15-20% of melanomas. NRAS variants activate MAPK and have been implicated in in acquired resistance to BRAF inhibitors. Vemurafenib’s label warns that one adverse effect associated with therapy may be the progression of pre-existing chronic myelomonocytic leukemia with NRAS mutation. Other adverse effects include arthralgia, rash, alopecia, photosensitivity reaction, pruritus, and skin papilloma. [from Medical Genetics Summaries]

MedGen UID:
893721
Concept ID:
CN239577
Sign or Symptom
4.

Cardiofaciocutaneous syndrome 1

Cardiofaciocutaneous (CFC) syndrome is characterized by cardiac abnormalities (pulmonic stenosis and other valve dysplasias, septal defects, hypertrophic cardiomyopathy, rhythm disturbances), distinctive craniofacial appearance, and cutaneous abnormalities (including xerosis, hyperkeratosis, ichthyosis, keratosis pilaris, ulerythema ophryogenes, eczema, pigmented moles, hemangiomas, and palmoplantar hyperkeratosis). The hair is typically sparse, curly, fine or thick, woolly or brittle; eyelashes and eyebrows may be absent or sparse. Nails may be dystrophic or fast growing. Some form of neurologic and/or cognitive delay (ranging from mild to severe) is seen in all affected individuals. Neoplasia, mostly acute lymphoblastic leukemia, has been reported in some individuals. [from GeneReviews]

MedGen UID:
852267
Concept ID:
CN029449
Disease or Syndrome
5.

LEOPARD syndrome 3

Noonan syndrome with multiple lentigines (NSML) is a condition in which the cardinal features consist of lentigines, hypertrophic cardiomyopathy, short stature, pectus deformity, and dysmorphic facial features including widely spaced eyes and ptosis. Multiple lentigines present as dispersed flat, black-brown macules, mostly on the face, neck, and upper part of the trunk with sparing of the mucosa. In general, lentigines do not appear until age four to five years but then increase to the thousands by puberty. Some individuals with NSML do not exhibit lentigines. Approximately 85% of affected individuals have heart defects, including hypertrophic cardiomyopathy (typically appearing during infancy and sometimes progressive) and pulmonary valve stenosis. Postnatal growth restriction resulting in short stature occurs in fewer than 50% of affected persons, although most affected individuals have a height that is less than the 25th centile for age. Sensorineural hearing deficits, present in approximately 20% of affected individuals, are poorly characterized. Intellectual disability, typically mild, is observed in approximately 30% of persons with NSML. [from GeneReviews]

MedGen UID:
462321
Concept ID:
C3150971
Disease or Syndrome
6.

Noonan syndrome 7

Noonan syndrome (NS) is characterized by characteristic facies, short stature, congenital heart defect, and developmental delay of variable degree. Other findings can include broad or webbed neck, unusual chest shape with superior pectus carinatum and inferior pectus excavatum, cryptorchidism, varied coagulation defects, lymphatic dysplasias, and ocular abnormalities. Although birth length is usually normal, final adult height approaches the lower limit of normal. Congenital heart disease occurs in 50%-80% of individuals. Pulmonary valve stenosis, often with dysplasia, is the most common heart defect and is found in 20%-50% of individuals. Hypertrophic cardiomyopathy, found in 20%-30% of individuals, may be present at birth or develop in infancy or childhood. Other structural defects include atrial and ventricular septal defects, branch pulmonary artery stenosis, and tetralogy of Fallot. Up to one fourth of affected individuals have mild intellectual disability, and language impairments in general are more common in NS than in the general population. [from GeneReviews]

MedGen UID:
462320
Concept ID:
C3150970
Disease or Syndrome
7.

Panitumumab response

Panitumumab is a monoclonal antibody used for the treatment of metastatic colorectal cancer (mCRC). Panitumumab is an epidermal growth factor receptor (EGFR) antagonist, which works by blocking the growth of cancer cells. It is administered every 14 days as an intravenous (IV) infusion, often with chemotherapy. Panitumumab is approved for first-line therapy with folinic acid, fluorouracil, and oxaliplatin (FOLFOX) and as monotherapy following disease progression after prior treatment with fluoropyrimidine-, oxaliplatin-, and irinotecan-containing chemotherapy. The location of the primary tumor correlates whether an individual with mCRC is likely respond to anti-EGFR therapy. Individuals with left-sided tumors are more likely to respond well to anti-EGFR therapy and have a better prognosis. Individuals with right-sided tumors have a worse prognosis and respond poorly to anti-EGFR therapy. However, only the genetic variation status of the tumor, and not the location of the tumor, is discussed in the FDA drug label’s dosing recommendations. Resistance to panitumumab is associated with specific RAS mutations. The RAS is a family of oncogenes that includes the KRAS and NRAS genes. When mutated, these genes have the ability to transform normal cells into cancerous cells by providing a continual growth stimulus to cells. The KRAS mutations are particularly common, being detectable in 40% of metastatic colorectal tumors. The KRAS mutations often lead to constitutive activation of the EGFR and are associated with resistance to anti-EGFR drugs such as panitumumab. Mutations in NRAS and another gene, BRAF, have also been associated with poor response to anti-EGFR therapy. The 2017 FDA-approved label states that panitumumab is indicated for wild-type RAS (no mutations in either KRAS or NRAS) mCRC. The label states that an FDA-approved test must be used to confirm the absence of RAS mutations before starting panitumumab, and that panitumumab is not indicated for the treatment of individuals with colorectal cancer with RAS mutations (in either NRAS or KRAS), or when the RAS genetic variation status is unknown. Similarly, the 2015 Update from the American Society of Clinical Oncology (ASCO) states that anti-EGFR therapy should only be considered for the treatment of individuals whose tumor is determined to not have variations detected after extended RAS testing. The 2020 National Comprehensive Cancer Network (NCCN) guideline also strongly recommends KRAS/NRAS genotyping of tumor tissue in all individuals with mCRC. In addition, the guideline states the V600E mutation in the BRAF gene makes a response to panitumumab highly unlikely, unless given with a BRAF inhibitor. [from Medical Genetics Summaries]

MedGen UID:
450471
Concept ID:
CN077999
Sign or Symptom
8.

Cetuximab response

Cetuximab is a monoclonal antibody used in the treatment of metastatic colorectal cancer (mCRC) and cancer of the head and neck. Cetuximab is an epidermal growth factor receptor (EGFR) antagonist, which works by blocking the growth of cancer cells. It is administered as a weekly intravenous (IV) infusion, but in practice, is often given every other week to coincide with chemotherapy (for example, FOLFIRI or FOLFOX). Cetuximab has several off-label uses as well, which include non-small cell lung cancer, squamous cell carcinoma of the skin, and Menetrier’s disease. Interestingly, for colorectal cancer, the location of the primary tumor influences whether an individual with mCRC will respond to anti-EGFR therapy, and influences prognosis. Individuals with left-sided tumors are more likely to respond well to anti-EGFR therapy and have a better prognosis. Individuals with right-sided tumors have a worse prognosis and respond poorly to anti-EGFR therapy. However, currently only the mutation status of the tumor, and not the location of the tumor, is discussed in the drug label’s dosing recommendations. Resistance to cetuximab is associated with specific RAS mutations. The RAS family of oncogenes includes the KRAS and NRAS genes. When mutated, these genes have the ability to transform normal cells into cancerous cells. The KRAS mutations are particularly common, being detectable in 40% of metastatic colorectal tumors. The KRAS mutations often lead to constitutive activation of the mitogen-activated protein kinase (MAPK) pathway and are associated with resistance to anti-EGFR drugs such as cetuximab. In addition, mutations in NRAS and another gene, BRAF, have been associated with poor response to anti-EGFR therapy; however, BRAF mutation does not explicitly preclude anti-EGFR therapy. Combination therapies targeting both BRAF and EGFR have shown to improve survival for individuals with wild-type RAS and mutant BRAF. The 2018 FDA-approved drug label for cetuximab states that for mCRC, cetuximab is indicated for K- and N-RAS wild-type (no mutation), EGFR-expressing tumors. The label states that an FDA-approved test must be used to confirm the absence of a RAS mutation (in either KRAS or NRAS) prior to starting cetuximab. While the FDA label also states that EGFR expression should also be confirmed by an approved test prior to starting therapy for mCRC, this is largely not implemented in practice, nor is it recommended by professional oncology society guidelines. Similarly, the 2015 Update from the American Society of Clinical Oncology (ASCO) states that anti-EGFR therapy should only be considered for the treatment of individuals whose tumor is determined to not have mutations detected after extended RAS testing. The 2020 National Comprehensive Cancer Network (NCCN) guideline also strongly recommends KRAS/NRAS genotyping of tumor tissue in all individuals with mCRC. In addition, the guideline states the V600E mutation in the BRAF gene makes a response to cetuximab (and panitumumab) highly unlikely unless given a BRAF inhibitor. [from Medical Genetics Summaries]

MedGen UID:
450439
Concept ID:
CN077967
Sign or Symptom
9.

Melanoma, cutaneous malignant, susceptibility to, 1

Malignant melanoma is a neoplasm of pigment-producing cells called melanocytes that occurs most often in the skin, but may also occur in the eyes, ears, gastrointestinal tract, leptomeninges, and oral and genital mucous membranes (summary by Habif, 2010). Genetic Heterogeneity of Susceptibility to Cutaneous Malignant Melanoma The locus for susceptibility to familial cutaneous malignant melanoma-1 (CMM1) has been mapped to chromosome 1p36. Other CMM susceptibility loci include CMM2 (155601), caused by variation in the CDKN2A gene (600160) on chromosome 9p21; CMM3 (609048), caused by variation in the CDK4 gene (123829) on chromosome 12q14; CMM4 (608035), mapped to chromosome 1p22; CMM5 (613099), caused by variation in the MC1R gene (155555) on chromosome 16q24; CMM6 (613972), caused by variation in the XRCC3 gene (600675) on chromosome 14q32; CMM7 (612263), mapped to chromosome 20q11; CMM8 (614456), caused by variation in the MITF gene (156845) on chromosome 3p13; CMM9 (615134), caused by variation in the TERT gene (187270) on chromosome 5p15; and CMM10 (615848), caused by mutation in the POT1 gene (606478) on chromosome 7q31. Somatic mutations causing malignant melanoma have also been identified in several genes, including BRAF (164757), STK11 (602216), PTEN (601728), TRRAP (603015), DCC (120470), GRIN2A (138253), ZNF831, BAP1 (603089), and RASA2 (601589). A large percentage of melanomas (40-60%) carry an activating somatic mutation in the BRAF gene, most often V600E (164757.0001) (Davies et al., 2002; Pollock et al., 2003). [from OMIM]

MedGen UID:
320506
Concept ID:
C1835047
Finding
10.

Colorectal cancer

Lynch syndrome is characterized by an increased risk for colorectal cancer (CRC) and cancers of the endometrium, ovary, stomach, small bowel, urinary tract, biliary tract, brain (usually glioblastoma), skin (sebaceous adenomas, sebaceous carcinomas, and keratoacanthomas), pancreas, and prostate. Cancer risks and age of onset vary depending on the associated gene. Several other cancer types have been reported to occur in individuals with Lynch syndrome (e.g., breast, sarcomas, adrenocortical carcinoma). However, the data are not sufficient to demonstrate that the risk of developing these cancers is increased in individuals with Lynch syndrome. [from GeneReviews]

MedGen UID:
83428
Concept ID:
C0346629
Neoplastic Process
Format
Items per page

Send to:

Choose Destination

Supplemental Content

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...