U.S. flag

An official website of the United States government

Format
Items per page

Send to:

Choose Destination

Links from Gene

Items: 8

1.

Fibrous dysplasia/McCune-Albright syndrome

Fibrous dysplasia / McCune-Albright syndrome (FD/MAS), the result of an early embryonic postzygotic somatic activating pathogenic variant in GNAS (encoding the cAMP pathway-associated G-protein, Gsa), is characterized by involvement of the skin, skeleton, and certain endocrine organs. However, because Gsa signaling is ubiquitous, additional tissues may be affected. Café au lait skin macules are common and are usually the first manifestation of the disease, apparent at or shortly after birth. Fibrous dysplasia (FD), which can involve any part and combination of the craniofacial, axial, and/or appendicular skeleton, can range from an isolated, asymptomatic monostotic lesion discovered incidentally to severe disabling polyostotic disease involving practically the entire skeleton and leading to progressive scoliosis, facial deformity, and loss of mobility, vision, and/or hearing. Endocrinopathies include: Gonadotropin-independent precocious puberty resulting from recurrent ovarian cysts in girls and autonomous testosterone production in boys; Testicular lesions with or without associated gonadotropin-independent precocious puberty; Thyroid lesions with or without non-autoimmune hyperthyroidism; Growth hormone excess; FGF23-mediated phosphate wasting with or without hypophosphatemia in association with fibrous dysplasia; and Neonatal hypercortisolism. The prognosis for individuals with FD/MAS is based on disease location and severity. [from GeneReviews]

MedGen UID:
1842504
Concept ID:
C5680283
Disease or Syndrome
2.

Pituitary adenoma 3, multiple types

Somatic mutations in the GNAS gene have been found predominantly in GH-secreting pituitary adenomas but also in ACTH-secreting adenomas. Mutations in the GNAS gene have been found in about 40% of sporadic somatotrophin adenomas (summary by Mete and Lopes, 2017). For a general description and a discussion of genetic heterogeneity of pituitary adenomas, see PITA1 (102200). [from OMIM]

MedGen UID:
1620824
Concept ID:
C4540135
Neoplastic Process
3.

Pseudohypoparathyroidism type I A

Disorders of GNAS inactivation include the phenotypes pseudohypoparathyroidism Ia, Ib, and Ic (PHP-Ia, -Ib, -Ic), pseudopseudohypoparathyroidism (PPHP), progressive osseous heteroplasia (POH), and osteoma cutis (OC). PHP-Ia and PHP-Ic are characterized by: End-organ resistance to endocrine hormones including parathyroid hormone (PTH), thyroid-stimulating hormone (TSH), gonadotropins (LH and FSH), growth hormone-releasing hormone (GHRH), and CNS neurotransmitters (leading to obesity and variable degrees of intellectual disability and developmental delay); and The Albright hereditary osteodystrophy (AHO) phenotype (short stature, round facies, and subcutaneous ossifications) and brachydactyly type E (shortening mainly of the 4th and/or 5th metacarpals and metatarsals and distal phalanx of the thumb). Although PHP-Ib is characterized principally by PTH resistance, some individuals also have partial TSH resistance and mild features of AHO (e.g., brachydactyly). PPHP, a more limited form of PHP-Ia, is characterized by various manifestations of the AHO phenotype without the hormone resistance or obesity. POH and OC are even more restricted variants of PPHP: POH consists of dermal ossification beginning in infancy, followed by increasing and extensive bone formation in deep muscle and fascia. OC consists of extra-skeletal ossification that is limited to the dermis and subcutaneous tissues. [from GeneReviews]

MedGen UID:
488447
Concept ID:
C3494506
Disease or Syndrome
4.

Pseudohypoparathyroidism type 1C

Disorders of GNAS inactivation include the phenotypes pseudohypoparathyroidism Ia, Ib, and Ic (PHP-Ia, -Ib, -Ic), pseudopseudohypoparathyroidism (PPHP), progressive osseous heteroplasia (POH), and osteoma cutis (OC). PHP-Ia and PHP-Ic are characterized by: End-organ resistance to endocrine hormones including parathyroid hormone (PTH), thyroid-stimulating hormone (TSH), gonadotropins (LH and FSH), growth hormone-releasing hormone (GHRH), and CNS neurotransmitters (leading to obesity and variable degrees of intellectual disability and developmental delay); and The Albright hereditary osteodystrophy (AHO) phenotype (short stature, round facies, and subcutaneous ossifications) and brachydactyly type E (shortening mainly of the 4th and/or 5th metacarpals and metatarsals and distal phalanx of the thumb). Although PHP-Ib is characterized principally by PTH resistance, some individuals also have partial TSH resistance and mild features of AHO (e.g., brachydactyly). PPHP, a more limited form of PHP-Ia, is characterized by various manifestations of the AHO phenotype without the hormone resistance or obesity. POH and OC are even more restricted variants of PPHP: POH consists of dermal ossification beginning in infancy, followed by increasing and extensive bone formation in deep muscle and fascia. OC consists of extra-skeletal ossification that is limited to the dermis and subcutaneous tissues. [from GeneReviews]

MedGen UID:
420958
Concept ID:
C2932716
Disease or Syndrome
5.

Pseudohypoparathyroidism type 1B

Disorders of GNAS inactivation include the phenotypes pseudohypoparathyroidism Ia, Ib, and Ic (PHP-Ia, -Ib, -Ic), pseudopseudohypoparathyroidism (PPHP), progressive osseous heteroplasia (POH), and osteoma cutis (OC). PHP-Ia and PHP-Ic are characterized by: End-organ resistance to endocrine hormones including parathyroid hormone (PTH), thyroid-stimulating hormone (TSH), gonadotropins (LH and FSH), growth hormone-releasing hormone (GHRH), and CNS neurotransmitters (leading to obesity and variable degrees of intellectual disability and developmental delay); and The Albright hereditary osteodystrophy (AHO) phenotype (short stature, round facies, and subcutaneous ossifications) and brachydactyly type E (shortening mainly of the 4th and/or 5th metacarpals and metatarsals and distal phalanx of the thumb). Although PHP-Ib is characterized principally by PTH resistance, some individuals also have partial TSH resistance and mild features of AHO (e.g., brachydactyly). PPHP, a more limited form of PHP-Ia, is characterized by various manifestations of the AHO phenotype without the hormone resistance or obesity. POH and OC are even more restricted variants of PPHP: POH consists of dermal ossification beginning in infancy, followed by increasing and extensive bone formation in deep muscle and fascia. OC consists of extra-skeletal ossification that is limited to the dermis and subcutaneous tissues. [from GeneReviews]

MedGen UID:
350343
Concept ID:
C1864100
Disease or Syndrome
6.

Progressive osseous heteroplasia

Disorders of GNAS inactivation include the phenotypes pseudohypoparathyroidism Ia, Ib, and Ic (PHP-Ia, -Ib, -Ic), pseudopseudohypoparathyroidism (PPHP), progressive osseous heteroplasia (POH), and osteoma cutis (OC). PHP-Ia and PHP-Ic are characterized by: End-organ resistance to endocrine hormones including parathyroid hormone (PTH), thyroid-stimulating hormone (TSH), gonadotropins (LH and FSH), growth hormone-releasing hormone (GHRH), and CNS neurotransmitters (leading to obesity and variable degrees of intellectual disability and developmental delay); and The Albright hereditary osteodystrophy (AHO) phenotype (short stature, round facies, and subcutaneous ossifications) and brachydactyly type E (shortening mainly of the 4th and/or 5th metacarpals and metatarsals and distal phalanx of the thumb). Although PHP-Ib is characterized principally by PTH resistance, some individuals also have partial TSH resistance and mild features of AHO (e.g., brachydactyly). PPHP, a more limited form of PHP-Ia, is characterized by various manifestations of the AHO phenotype without the hormone resistance or obesity. POH and OC are even more restricted variants of PPHP: POH consists of dermal ossification beginning in infancy, followed by increasing and extensive bone formation in deep muscle and fascia. OC consists of extra-skeletal ossification that is limited to the dermis and subcutaneous tissues. [from GeneReviews]

MedGen UID:
137714
Concept ID:
C0334041
Disease or Syndrome
7.

McCune-Albright syndrome

Fibrous dysplasia / McCune-Albright syndrome (FD/MAS), the result of an early embryonic postzygotic somatic activating pathogenic variant in GNAS (encoding the cAMP pathway-associated G-protein, Gsa), is characterized by involvement of the skin, skeleton, and certain endocrine organs. However, because Gsa signaling is ubiquitous, additional tissues may be affected. Café au lait skin macules are common and are usually the first manifestation of the disease, apparent at or shortly after birth. Fibrous dysplasia (FD), which can involve any part and combination of the craniofacial, axial, and/or appendicular skeleton, can range from an isolated, asymptomatic monostotic lesion discovered incidentally to severe disabling polyostotic disease involving practically the entire skeleton and leading to progressive scoliosis, facial deformity, and loss of mobility, vision, and/or hearing. Endocrinopathies include: Gonadotropin-independent precocious puberty resulting from recurrent ovarian cysts in girls and autonomous testosterone production in boys; Testicular lesions with or without associated gonadotropin-independent precocious puberty; Thyroid lesions with or without non-autoimmune hyperthyroidism; Growth hormone excess; FGF23-mediated phosphate wasting with or without hypophosphatemia in association with fibrous dysplasia; and Neonatal hypercortisolism. The prognosis for individuals with FD/MAS is based on disease location and severity. [from GeneReviews]

MedGen UID:
69164
Concept ID:
C0242292
Disease or Syndrome
8.

Pseudopseudohypoparathyroidism

Disorders of GNAS inactivation include the phenotypes pseudohypoparathyroidism Ia, Ib, and Ic (PHP-Ia, -Ib, -Ic), pseudopseudohypoparathyroidism (PPHP), progressive osseous heteroplasia (POH), and osteoma cutis (OC). PHP-Ia and PHP-Ic are characterized by: End-organ resistance to endocrine hormones including parathyroid hormone (PTH), thyroid-stimulating hormone (TSH), gonadotropins (LH and FSH), growth hormone-releasing hormone (GHRH), and CNS neurotransmitters (leading to obesity and variable degrees of intellectual disability and developmental delay); and The Albright hereditary osteodystrophy (AHO) phenotype (short stature, round facies, and subcutaneous ossifications) and brachydactyly type E (shortening mainly of the 4th and/or 5th metacarpals and metatarsals and distal phalanx of the thumb). Although PHP-Ib is characterized principally by PTH resistance, some individuals also have partial TSH resistance and mild features of AHO (e.g., brachydactyly). PPHP, a more limited form of PHP-Ia, is characterized by various manifestations of the AHO phenotype without the hormone resistance or obesity. POH and OC are even more restricted variants of PPHP: POH consists of dermal ossification beginning in infancy, followed by increasing and extensive bone formation in deep muscle and fascia. OC consists of extra-skeletal ossification that is limited to the dermis and subcutaneous tissues. [from GeneReviews]

MedGen UID:
10995
Concept ID:
C0033835
Disease or Syndrome
Format
Items per page

Send to:

Choose Destination

Supplemental Content

Find related data