Adult-onset foveomacular vitelliform dystrophy- MedGen UID:
- 334280
- •Concept ID:
- C1842914
- •
- Disease or Syndrome
Adult-onset foveomacular vitelliform dystrophy, also known as adult vitelliform macular dystrophy, adult-type foveomacular dystrophy, adult vitelliform macular degeneration, pseudovitelliform macular degeneration, and adult-onset foveomacular pigment epithelial dystrophy, is characterized by a solitary, oval, slightly elevated yellowish subretinal lesion of the fovea that is similar in appearance to the vitelliform or egg-yolk stage of Best disease (153700). Initially the yellow lesion may be present in only one eye. The size is generally one-third to one disc diameter, and small yellow flecks are seen in the paracentral lesion. Patients usually become symptomatic in the fourth or fifth decade of life with a protracted decrease of visual acuity and mild metamorphopsia. Electrooculographic testing reveals a normal or only slightly reduced Arden ratio, which is intensely abnormal in Best disease. The prognosis is optimistic, as most patients retain reading vision throughout life (Felbor et al., 1997; Yamaguchi et al., 2001).
For a discussion of genetic heterogeneity of vitelliform macular dystrophy, see VMD1 (153840).
Vitelliform macular dystrophy 4- MedGen UID:
- 863779
- •Concept ID:
- C4015342
- •
- Disease or Syndrome
Macular dystrophies are inherited retinal dystrophies in which various forms of deposits, pigmentary changes, and atrophic lesions are observed in the macula lutea, the cone-rich region of the central retina. Vitelliform macular dystrophies (VMDs) form a subset of macular dystrophies characterized by round yellow deposits, usually at the center of the macula and containing lipofuscin, a chemically heterogeneous pigment visualized by autofluorescence imaging of the fundus (summary by Manes et al., 2013).
Vitelliform macular dystrophy-4 (VMD4) is characterized by late-onset moderate visual impairment, small satellite drusen-like lesions in the foveal area, preservation of retinal pigment epithelium (RPE) reflectivity, deposits above the RPE between the ellipsoid and outer segment interdigitation lines on spectral-domain optical coherence tomography (SD-OCT), and normal or borderline results on electrooculography (EOG) (Meunier et al., 2014). In most families with VMD4 caused by compound heterozygous or homozygous mutations in IMPG1, asymptomatic heterozygous carriers have been found to have fundus changes (Manes et al., 2013; Brandl et al., 2017).
Brandl et al. (2017) examined patients with VMD4, caused by mutation in the IMPG1 gene, and patients with VMD5 (616152), caused by mutation in the IMPG2 gene, and observed strikingly similar phenotypic characteristics. They noted that retinal lesions progressed in consecutive stages, with the initial development of a single vitelliform lesion in the central macula, with detachment of the neurosensory retina and hyperreflective material located above a preserved Bruch membrane/RPE on SD-OCT. Next, resorption of the hyperreflective material occurs, leaving behind a dome-shaped, optically empty cavity; alternatively, the foveal cavity formed by retinal detachment may become successively filled with material. Finally, there is collapse of the cavity with central retinal atrophy and loss of RPE, resulting in the most pronounced loss of visual acuity. The authors also noted that symptoms tended to be more severe in patients with IMPG1 mutations.
For a discussion of genetic heterogeneity of vitelliform macular dystrophy, see VMD1 (153840).
Vitelliform macular dystrophy 5- MedGen UID:
- 863780
- •Concept ID:
- C4015343
- •
- Disease or Syndrome
Macular dystrophies are inherited retinal dystrophies in which various forms of deposits, pigmentary changes, and atrophic lesions are observed in the macula lutea, the cone-rich region of the central retina. Vitelliform macular dystrophies (VMDs) form a subset of macular dystrophies characterized by round yellow deposits, usually at the center of the macula and containing lipofuscin, a chemically heterogeneous pigment visualized by autofluorescence imaging of the fundus (summary by Manes et al., 2013).
Vitelliform macular dystrophy-5 (VMD5) is characterized by late-onset moderate visual impairment, preservation of retinal pigment epithelium (RPE) reflectivity, deposits above the RPE between the ellipsoid and outer segment interdigitation lines on spectral-domain optical coherence tomography (SD-OCT), and normal or borderline results on electrooculopathy (EOG) (Meunier et al., 2014).
Brandl et al. (2017) examined patients with IMPG2- and IMPG1 (602870)-associated VMD (see VMD4; 616151) and observed strikingly similar phenotypic characteristics. They noted that retinal lesions progressed in consecutive stages, with the initial development of a single vitelliform lesion in the central macula, with detachment of the neurosensory retina and hyperreflective material located above the seemingly preserved Bruch membrane/RPE seen on SD-OCT. Next, resorption of the hyperreflective material occurs, leaving behind a dome-shaped, optically empty cavity; alternatively, the foveal cavity formed by retinal detachment may become successively filled with material. Finally, there is collapse of the cavity with central retinal atrophy and loss of RPE, resulting in the most pronounced loss of visual acuity. The authors also noted that symptoms tended to be more severe in patients with IMPG1 mutations.
For a discussion of genetic heterogeneity of vitelliform macular dystrophy, see VMD1 (153840).
Vitelliform macular dystrophy 1- MedGen UID:
- 1636950
- •Concept ID:
- C4551953
- •
- Disease or Syndrome
Macular dystrophies are inherited retinal dystrophies in which various forms of deposits, pigmentary changes, and atrophic lesions are observed in the macula lutea, the cone-rich region of the central retina. Vitelliform macular dystrophies (VMDs) form a subset of macular dystrophies characterized by round yellow deposits, usually at the center of the macula and containing lipofuscin, a chemically heterogeneous pigment visualized by autofluorescence imaging of the fundus (summary by Manes et al., 2013). In contrast to typical VMD (see 153700), patients with atypical VMD may exhibit normal electrooculography, even when severe loss of vision is present, and fluorescein angiography is thus the most reliable test for identifying affected individuals (Hittner et al., 1984).
Genetic Heterogeneity of Vitelliform Macular Dystrophy
See also vitelliform macular dystrophy-2 (VMD2; 153700), caused by mutation in the BEST1 gene (607854) on chromosome 11q12; VMD3 (608161), caused by mutation in the PRPH2 gene (179605) on chromosome 6p21; VMD4 (616151), caused by mutation in the IMPG1 gene (602870) on chromosome 6q14; and VMD5 (616152), caused by mutation in the IMPG2 gene (607056) on chromosome 3q12.