U.S. flag

An official website of the United States government

Format

Send to:

Choose Destination

Muscle fiber necrosis

MedGen UID:
376893
Concept ID:
C1850848
Finding; Pathologic Function
Synonym: Muscle fibre necrosis
 
HPO: HP:0003713

Definition

Abnormal cell death involving muscle fibers usually associated with break in, or absence of, muscle surface fiber membrane and resulting in irreversible damage to muscle fibers. [from HPO]

Term Hierarchy

CClinical test,  RResearch test,  OOMIM,  GGeneReviews,  VClinVar  
  • CROGVMuscle fiber necrosis

Conditions with this feature

Autosomal recessive limb-girdle muscular dystrophy type 2C
MedGen UID:
98045
Concept ID:
C0410173
Disease or Syndrome
A subtype of autosomal recessive limb-girdle muscular dystrophy characterized by a childhood onset of progressive shoulder and pelvic girdle muscle weakness and atrophy frequently associated with calf hypertrophy, diaphragmatic weakness, and/or variable cardiac abnormalities. Mild to moderate elevated serum creatine kinase levels and positive Gowers sign are reported.
Ullrich congenital muscular dystrophy 1A
MedGen UID:
98046
Concept ID:
C0410179
Disease or Syndrome
Collagen VI-related dystrophies (COL6-RDs) represent a continuum of overlapping clinical phenotypes with Bethlem muscular dystrophy at the milder end, Ullrich congenital muscular dystrophy (UCMD) at the more severe end, and a phenotype in between UCMD and Bethlem muscular dystrophy, referred to as intermediate COL6-RD. Bethlem muscular dystrophy is characterized by a combination of proximal muscle weakness and joint contractures. Hypotonia and delayed motor milestones occur in early childhood; mild hypotonia and weakness may be present congenitally. By adulthood, there is evidence of proximal weakness and contractures of the elbows, Achilles tendons, and long finger flexors. The progression of weakness is slow, and more than two thirds of affected individuals older than age 50 years remain independently ambulatory indoors, while relying on supportive means for mobility outdoors. Respiratory involvement is not a consistent feature. UCMD is characterized by congenital weakness, hypotonia, proximal joint contractures, and striking hyperlaxity of distal joints. Decreased fetal movements are frequently reported. Some affected children acquire the ability to walk independently; however, progression of the disease results in a loss of ambulation by age ten to eleven years. Early and severe respiratory insufficiency occurs in all individuals, resulting in the need for nocturnal noninvasive ventilation (NIV) in the form of bilevel positive airway pressure (BiPAP) by age 11 years. Intermediate COL6-RD is characterized by independent ambulation past age 11 years and respiratory insufficiency that is later in onset than in UCMD and results in the need for NIV in the form of BiPAP by the late teens to early 20s. In contrast to individuals with Bethlem muscular dystrophy, those with intermediate COL6-RD typically do not achieve the ability to run, jump, or climb stairs without use of a railing.
Bethlem myopathy
MedGen UID:
331805
Concept ID:
C1834674
Disease or Syndrome
Bethlem myopathy-1 (BTHLM1) is a congenital muscular dystrophy characterized by distal joint laxity and a combination of distal and proximal joint contractures. The age at onset is highly variable, ranging from infancy to adulthood. Disease progression is slow and ambulation is usually retained into adulthood (summary by Butterfield et al., 2013). Genetic Heterogeneity of Bethlem Myopathy See Bethlem myopathy-1B (BTHLM1B; 620725), caused by mutation in the COL6A2 gene (120240) on chromosome 21q22; Bethlem myopathy-1C (620726), caused by mutation the COL6A3 gene (120250) on chromosome 2q37; and Bethlem myopathy-2 (BTHLM2; 616471), caused by mutation in the COL12A1 gene (120320) on chromosome 6q13-q14.
Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal dominant 1
MedGen UID:
371919
Concept ID:
C1834846
Disease or Syndrome
POLG-related disorders comprise a continuum of overlapping phenotypes that were clinically defined long before their molecular basis was known. Most affected individuals have some, but not all, of the features of a given phenotype; nonetheless, the following nomenclature can assist the clinician in diagnosis and management. Onset of the POLG-related disorders ranges from infancy to late adulthood. Alpers-Huttenlocher syndrome (AHS), one of the most severe phenotypes, is characterized by childhood-onset progressive and ultimately severe encephalopathy with intractable epilepsy and hepatic failure. Childhood myocerebrohepatopathy spectrum (MCHS) presents between the first few months of life and about age three years with developmental delay or dementia, lactic acidosis, and a myopathy with failure to thrive. Other findings can include liver failure, renal tubular acidosis, pancreatitis, cyclic vomiting, and hearing loss. Myoclonic epilepsy myopathy sensory ataxia (MEMSA) now describes the spectrum of disorders with epilepsy, myopathy, and ataxia without ophthalmoplegia. MEMSA now includes the disorders previously described as spinocerebellar ataxia with epilepsy (SCAE). The ataxia neuropathy spectrum (ANS) includes the phenotypes previously referred to as mitochondrial recessive ataxia syndrome (MIRAS) and sensory ataxia neuropathy dysarthria and ophthalmoplegia (SANDO). About 90% of persons in the ANS have ataxia and neuropathy as core features. Approximately two thirds develop seizures and almost one half develop ophthalmoplegia; clinical myopathy is rare. Autosomal recessive progressive external ophthalmoplegia (arPEO) is characterized by progressive weakness of the extraocular eye muscles resulting in ptosis and ophthalmoparesis (or paresis of the extraocular muscles) without associated systemic involvement; however, caution is advised because many individuals with apparently isolated arPEO at the onset develop other manifestations of POLG-related disorders over years or decades. Of note, in the ANS spectrum the neuropathy commonly precedes the onset of PEO by years to decades. Autosomal dominant progressive external ophthalmoplegia (adPEO) typically includes a generalized myopathy and often variable degrees of sensorineural hearing loss, axonal neuropathy, ataxia, depression, parkinsonism, hypogonadism, and cataracts (in what has been called "chronic progressive external ophthalmoplegia plus," or "CPEO+").
Spinal muscular atrophy, type IV
MedGen UID:
325364
Concept ID:
C1838230
Disease or Syndrome
Spinal muscular atrophy (SMA) is characterized by muscle weakness and atrophy resulting from progressive degeneration and irreversible loss of the anterior horn cells in the spinal cord (i.e., lower motor neurons) and the brain stem nuclei. The onset of weakness ranges from before birth to adulthood. The weakness is symmetric, proximal > distal, and progressive. Before the genetic basis of SMA was understood, it was classified into clinical subtypes based on maximum motor function achieved; however, it is now apparent that the phenotype of SMN1-associated SMA spans a continuum without clear delineation of subtypes. With supportive care only, poor weight gain with growth failure, restrictive lung disease, scoliosis, and joint contractures are common complications; however, newly available targeted treatment options are changing the natural history of this disease.
X-linked myopathy with excessive autophagy
MedGen UID:
374264
Concept ID:
C1839615
Disease or Syndrome
X-linked myopathy with excessive autophagy (XMEA) is an X-linked recessive skeletal muscle disorder characterized by childhood onset of progressive muscle weakness and atrophy primarily affecting the proximal muscles. While onset is usually in childhood, it can range from infancy to adulthood. Many patients lose ambulation and become wheelchair-bound. Other organ systems, including the heart, are clinically unaffected. Muscle biopsy shows intracytoplasmic autophagic vacuoles with sarcolemmal features and a multilayered basal membrane (summary by Ramachandran et al., 2013; Kurashige et al., 2013, and Ruggieri et al., 2015). Danon disease (300257), caused by mutation in the LAMP2 gene (309060) on chromosome Xq24, is a distinct disorder with similar pathologic features.
Sensory ataxic neuropathy, dysarthria, and ophthalmoparesis
MedGen UID:
375302
Concept ID:
C1843851
Disease or Syndrome
POLG-related disorders comprise a continuum of overlapping phenotypes that were clinically defined long before their molecular basis was known. Most affected individuals have some, but not all, of the features of a given phenotype; nonetheless, the following nomenclature can assist the clinician in diagnosis and management. Onset of the POLG-related disorders ranges from infancy to late adulthood. Alpers-Huttenlocher syndrome (AHS), one of the most severe phenotypes, is characterized by childhood-onset progressive and ultimately severe encephalopathy with intractable epilepsy and hepatic failure. Childhood myocerebrohepatopathy spectrum (MCHS) presents between the first few months of life and about age three years with developmental delay or dementia, lactic acidosis, and a myopathy with failure to thrive. Other findings can include liver failure, renal tubular acidosis, pancreatitis, cyclic vomiting, and hearing loss. Myoclonic epilepsy myopathy sensory ataxia (MEMSA) now describes the spectrum of disorders with epilepsy, myopathy, and ataxia without ophthalmoplegia. MEMSA now includes the disorders previously described as spinocerebellar ataxia with epilepsy (SCAE). The ataxia neuropathy spectrum (ANS) includes the phenotypes previously referred to as mitochondrial recessive ataxia syndrome (MIRAS) and sensory ataxia neuropathy dysarthria and ophthalmoplegia (SANDO). About 90% of persons in the ANS have ataxia and neuropathy as core features. Approximately two thirds develop seizures and almost one half develop ophthalmoplegia; clinical myopathy is rare. Autosomal recessive progressive external ophthalmoplegia (arPEO) is characterized by progressive weakness of the extraocular eye muscles resulting in ptosis and ophthalmoparesis (or paresis of the extraocular muscles) without associated systemic involvement; however, caution is advised because many individuals with apparently isolated arPEO at the onset develop other manifestations of POLG-related disorders over years or decades. Of note, in the ANS spectrum the neuropathy commonly precedes the onset of PEO by years to decades. Autosomal dominant progressive external ophthalmoplegia (adPEO) typically includes a generalized myopathy and often variable degrees of sensorineural hearing loss, axonal neuropathy, ataxia, depression, parkinsonism, hypogonadism, and cataracts (in what has been called "chronic progressive external ophthalmoplegia plus," or "CPEO+").
Glycogen storage disease IXd
MedGen UID:
335112
Concept ID:
C1845151
Disease or Syndrome
Phosphorylase kinase (PhK) deficiency causing glycogen storage disease type IX (GSD IX) results from deficiency of the enzyme phosphorylase b kinase, which has a major regulatory role in the breakdown of glycogen. The two types of PhK deficiency are liver PhK deficiency (characterized by early childhood onset of hepatomegaly and growth restriction, and often, but not always, fasting ketosis and hypoglycemia) and muscle PhK deficiency, which is considerably rarer (characterized by any of the following: exercise intolerance, myalgia, muscle cramps, myoglobinuria, and progressive muscle weakness). While symptoms and biochemical abnormalities of liver PhK deficiency were thought to improve with age, it is becoming evident that affected individuals need to be monitored for long-term complications such as liver fibrosis and cirrhosis.
Autosomal recessive limb-girdle muscular dystrophy type 2D
MedGen UID:
424706
Concept ID:
C2936332
Disease or Syndrome
Autosomal recessive limb-girdle muscular dystrophy-3 (LGMDR3) affects mainly the proximal muscles and results in difficulty walking. Most individuals have onset in childhood; the disorder is progressive. Other features may include scapular winging, calf pseudohypertrophy, and contractures. Cardiomyopathy has rarely been reported (summary by Babameto-Laku et al., 2011). For a discussion of genetic heterogeneity of autosomal recessive limb-girdle muscular dystrophy, see LGMDR1 (253600).
MEGF10-related myopathy
MedGen UID:
482309
Concept ID:
C3280679
Disease or Syndrome
Congenital myopathy-10A (CMYO10A) is a severe autosomal recessive skeletal muscle disorder characterized by generalized hypotonia, respiratory insufficiency, and poor feeding apparent from birth. Decreased fetal movements may be observed. More variable features include high-arched palate, distal joint contractures, foot deformities, scoliosis, areflexia, and dysphagia. Many patients show eventration of the diaphragm. Affected individuals become ventilator-dependent in the first months or years of life and never achieve walking; many die in childhood (Logan et al., 2011). Patients with more damaging mutations in the MEGF10 gene, including nonsense or frameshift null mutations, show the more severe phenotype (CMYO10A), whereas those with missense mutations affecting conserved cysteine residues in the EGF-like domain show the less severe phenotype with later onset of respiratory failure and minicores on muscle biopsy (CMYO10B) (Croci et al., 2022). For a discussion of genetic heterogeneity of congenital myopathy, see CMYO1A (117000).
Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal recessive 1
MedGen UID:
897191
Concept ID:
C4225153
Disease or Syndrome
POLG-related disorders comprise a continuum of overlapping phenotypes that were clinically defined long before their molecular basis was known. Most affected individuals have some, but not all, of the features of a given phenotype; nonetheless, the following nomenclature can assist the clinician in diagnosis and management. Onset of the POLG-related disorders ranges from infancy to late adulthood. Alpers-Huttenlocher syndrome (AHS), one of the most severe phenotypes, is characterized by childhood-onset progressive and ultimately severe encephalopathy with intractable epilepsy and hepatic failure. Childhood myocerebrohepatopathy spectrum (MCHS) presents between the first few months of life and about age three years with developmental delay or dementia, lactic acidosis, and a myopathy with failure to thrive. Other findings can include liver failure, renal tubular acidosis, pancreatitis, cyclic vomiting, and hearing loss. Myoclonic epilepsy myopathy sensory ataxia (MEMSA) now describes the spectrum of disorders with epilepsy, myopathy, and ataxia without ophthalmoplegia. MEMSA now includes the disorders previously described as spinocerebellar ataxia with epilepsy (SCAE). The ataxia neuropathy spectrum (ANS) includes the phenotypes previously referred to as mitochondrial recessive ataxia syndrome (MIRAS) and sensory ataxia neuropathy dysarthria and ophthalmoplegia (SANDO). About 90% of persons in the ANS have ataxia and neuropathy as core features. Approximately two thirds develop seizures and almost one half develop ophthalmoplegia; clinical myopathy is rare. Autosomal recessive progressive external ophthalmoplegia (arPEO) is characterized by progressive weakness of the extraocular eye muscles resulting in ptosis and ophthalmoparesis (or paresis of the extraocular muscles) without associated systemic involvement; however, caution is advised because many individuals with apparently isolated arPEO at the onset develop other manifestations of POLG-related disorders over years or decades. Of note, in the ANS spectrum the neuropathy commonly precedes the onset of PEO by years to decades. Autosomal dominant progressive external ophthalmoplegia (adPEO) typically includes a generalized myopathy and often variable degrees of sensorineural hearing loss, axonal neuropathy, ataxia, depression, parkinsonism, hypogonadism, and cataracts (in what has been called "chronic progressive external ophthalmoplegia plus," or "CPEO+").
Neuromuscular disease and ocular or auditory anomalies with or without seizures
MedGen UID:
1684689
Concept ID:
C5231483
Disease or Syndrome
Muscular dystrophy, limb-girdle, autosomal recessive 26
MedGen UID:
1718449
Concept ID:
C5394268
Disease or Syndrome
Autosomal recessive limb-girdle muscular dystrophy-26 (LGMDR26) is a muscle disorder characterized by adult-onset weakness that primarily affects the proximal muscles of the lower limbs. The disorder is slowly progressive, with later involvement of the upper limbs and fatty replacement of muscle tissue apparent on MRI. Some patients may have calf hypertrophy. Serum creatine kinase is significantly elevated, and skeletal muscle biopsy shows typical dystrophic features with normal ultrastructural findings. There is no cardiac or respiratory involvement (summary by Vissing et al., 2019). For a discussion of genetic heterogeneity of autosomal recessive limb-girdle muscular dystrophy, see LGMDR1 (253600).
Autosomal recessive limb-girdle muscular dystrophy type 2X
MedGen UID:
1799561
Concept ID:
C5568138
Disease or Syndrome
Autosomal recessive limb-girdle muscular dystrophy-25 (LGMDR25) is characterized by slowly progressive onset of proximal lower limb weakness in adulthood. Affected individuals also develop cardiac arrhythmias resulting in syncopal episodes as young adults or later in life (summary by Schindler et al., 2016). For a discussion of genetic heterogeneity of autosomal recessive limb-girdle muscular dystrophy (LGMD), see LGMDR1 (253600).
Myopathy with myalgia, increased serum creatine kinase, and with or without episodic rhabdomyolysis
MedGen UID:
1824033
Concept ID:
C5774260
Disease or Syndrome
Myopathy with myalgia, increased serum creatine kinase, and with or without episodic rhabdomyolysis-1 (MMCKR1) is an autosomal recessive skeletal muscle disorder characterized by the onset of muscle cramping and stiffness on exertion in infancy or early childhood, although later (even adult) onset has also been reported. The features remit with rest, but some individuals develop mild proximal or distal muscle weakness. Rare affected individuals may demonstrate cardiac involvement, including left ventricular dysfunction or rhythm abnormalities. Laboratory studies show increased baseline serum creatine kinase levels with episodic spikes that may coincide with rhabdomyolysis. EMG shows myopathic changes, and muscle biopsy shows nonspecific myopathic or degenerative features (Lopes Abath Neto et al., 2021; Salzer-Sheelo et al., 2022). Genetic Heterogeneity of Myopathy with Myalgia, Increased Serum Creatine Kinase, and with or without Episodic Rhabdomyolysis MMCKR2 (620971) is caused by mutation in the DTNA gene (601239) on chromosome 18q12.

Professional guidelines

PubMed

Bajek A, Porowinska D, Kloskowski T, Brzoska E, Ciemerych MA, Drewa T
Crit Rev Eukaryot Gene Expr 2015;25(1):1-11. doi: 10.1615/critreveukaryotgeneexpr.2015011074. PMID: 25955813
Sarnat HB
Am J Dis Child 1978 Aug;132(8):782-5. doi: 10.1001/archpedi.1978.02120330054014. PMID: 685892

Recent clinical studies

Etiology

Liu H, Deng L, Guo Y, Liu H, Chen B, Zhang J, Ran J, Yin G, Xie Q
J Gene Med 2024 Jan;26(1):e3598. Epub 2023 Sep 25 doi: 10.1002/jgm.3598. PMID: 37743820
Sener U, Martinez-Thompson J, Laughlin RS, Dimberg EL, Rubin DI
Muscle Nerve 2019 Mar;59(3):315-320. Epub 2018 Dec 29 doi: 10.1002/mus.26381. PMID: 30414326
Melli G, Chaudhry V, Cornblath DR
Medicine (Baltimore) 2005 Nov;84(6):377-385. doi: 10.1097/01.md.0000188565.48918.41. PMID: 16267412
Dalakas MC
Clin Neuropharmacol 1992 Oct;15(5):327-51. doi: 10.1097/00002826-199210000-00001. PMID: 1423335
Kingston WJ, Moxley RT 3rd
Neurol Clin 1988 Aug;6(3):545-61. PMID: 3065600

Diagnosis

Sener U, Martinez-Thompson J, Laughlin RS, Dimberg EL, Rubin DI
Muscle Nerve 2019 Mar;59(3):315-320. Epub 2018 Dec 29 doi: 10.1002/mus.26381. PMID: 30414326
Melli G, Chaudhry V, Cornblath DR
Medicine (Baltimore) 2005 Nov;84(6):377-385. doi: 10.1097/01.md.0000188565.48918.41. PMID: 16267412
Dalakas MC
Ann Neurol 1995 May;37 Suppl 1:S74-86. doi: 10.1002/ana.410370709. PMID: 8968219
Kingston WJ, Moxley RT 3rd
Neurol Clin 1988 Aug;6(3):545-61. PMID: 3065600
Heffner RR Jr, Armbrustmacher VW, Earle KM
Cancer 1977 Jul;40(1):301-6. doi: 10.1002/1097-0142(197707)40:1<301::aid-cncr2820400142>3.0.co;2-n. PMID: 880559

Therapy

Kakinuma Y, Amano R, Ishida A, Nishino I, Taki K
BMC Neurol 2022 Oct 29;22(1):396. doi: 10.1186/s12883-022-02937-2. PMID: 36309650Free PMC Article
Goudenege S, Lamarre Y, Dumont N, Rousseau J, Frenette J, Skuk D, Tremblay JP
Mol Ther 2010 Dec;18(12):2155-63. Epub 2010 Aug 3 doi: 10.1038/mt.2010.165. PMID: 20683444Free PMC Article
Melli G, Chaudhry V, Cornblath DR
Medicine (Baltimore) 2005 Nov;84(6):377-385. doi: 10.1097/01.md.0000188565.48918.41. PMID: 16267412
Dalakas MC
Ann Neurol 1995 May;37 Suppl 1:S74-86. doi: 10.1002/ana.410370709. PMID: 8968219
De Bleecker JL, De Reuck JL, Willems JL
Clin Neurol Neurosurg 1992;94(2):93-103. doi: 10.1016/0303-8467(92)90065-b. PMID: 1324821

Prognosis

Sener U, Martinez-Thompson J, Laughlin RS, Dimberg EL, Rubin DI
Muscle Nerve 2019 Mar;59(3):315-320. Epub 2018 Dec 29 doi: 10.1002/mus.26381. PMID: 30414326
Ng WF, To KF, Lam WW, Ng TK, Lee KC
Hum Pathol 2006 Apr;37(4):381-90. doi: 10.1016/j.humpath.2006.01.015. PMID: 16564911Free PMC Article
Melli G, Chaudhry V, Cornblath DR
Medicine (Baltimore) 2005 Nov;84(6):377-385. doi: 10.1097/01.md.0000188565.48918.41. PMID: 16267412
Courtney AE, C Doherty C, Herron B, McCarron MO, Connolly JK, Jefferson JA
Am J Transplant 2004 Jul;4(7):1204-7. doi: 10.1111/j.1600-6143.2004.00489.x. PMID: 15196084
Collins MP, Mendell JR, Periquet MI, Sahenk Z, Amato AA, Gronseth GS, Barohn RJ, Jackson CE, Kissel JT
Neurology 2000 Sep 12;55(5):636-43. doi: 10.1212/wnl.55.5.636. PMID: 10980725

Clinical prediction guides

Sener U, Martinez-Thompson J, Laughlin RS, Dimberg EL, Rubin DI
Muscle Nerve 2019 Mar;59(3):315-320. Epub 2018 Dec 29 doi: 10.1002/mus.26381. PMID: 30414326
Allenbach Y, Arouche-Delaperche L, Preusse C, Radbruch H, Butler-Browne G, Champtiaux N, Mariampillai K, Rigolet A, Hufnagl P, Zerbe N, Amelin D, Maisonobe T, Louis-Leonard S, Duyckaerts C, Eymard B, Goebel HH, Bergua C, Drouot L, Boyer O, Benveniste O, Stenzel W
Neurology 2018 Feb 6;90(6):e507-e517. Epub 2018 Jan 12 doi: 10.1212/WNL.0000000000004923. PMID: 29330311
Thornell LE
Curr Opin Clin Nutr Metab Care 2011 Jan;14(1):22-7. doi: 10.1097/MCO.0b013e3283412260. PMID: 21088571
Dalakas MC
Clin Neuropharmacol 1992 Oct;15(5):327-51. doi: 10.1097/00002826-199210000-00001. PMID: 1423335
Hikida RS, Staron RS, Hagerman FC, Sherman WM, Costill DL
J Neurol Sci 1983 May;59(2):185-203. doi: 10.1016/0022-510x(83)90037-0. PMID: 6854349

Supplemental Content

Table of contents

    Clinical resources

    Practice guidelines

    • PubMed
      See practice and clinical guidelines in PubMed. The search results may include broader topics and may not capture all published guidelines. See the FAQ for details.

    Consumer resources

    Recent activity

    Your browsing activity is empty.

    Activity recording is turned off.

    Turn recording back on

    See more...