Type IV short rib polydactyly syndrome- MedGen UID:
- 96578
- •Concept ID:
- C0432198
- •
- Disease or Syndrome
Short-rib thoracic dysplasia (SRTD) with or without polydactyly refers to a group of autosomal recessive skeletal ciliopathies that are characterized by a constricted thoracic cage, short ribs, shortened tubular bones, and a 'trident' appearance of the acetabular roof. SRTD encompasses Ellis-van Creveld syndrome (EVC) and the disorders previously designated as Jeune syndrome or asphyxiating thoracic dystrophy (ATD), short rib-polydactyly syndrome (SRPS), and Mainzer-Saldino syndrome (MZSDS). Polydactyly is variably present, and there is phenotypic overlap in the various forms of SRTDs, which differ by visceral malformation and metaphyseal appearance. Nonskeletal involvement can include cleft lip/palate as well as anomalies of major organs such as the brain, eye, heart, kidneys, liver, pancreas, intestines, and genitalia. Some forms of SRTD are lethal in the neonatal period due to respiratory insufficiency secondary to a severely restricted thoracic cage, whereas others are compatible with life (summary by Huber and Cormier-Daire, 2012 and Schmidts et al., 2013).
There is phenotypic overlap with the cranioectodermal dysplasias (Sensenbrenner syndrome; see CED1, 218330). Patients with a clinical diagnosis of Beemer-Langer syndrome have been found to carry mutations in the IFT80 gene (611177); see SRTD2, 611263.
For a discussion of genetic heterogeneity of short-rib thoracic dysplasia, see SRTD1 (208500).
Pentalogy of Cantrell- MedGen UID:
- 107540
- •Concept ID:
- C0559483
- •
- Disease or Syndrome
Pentalogy of Cantrell (POC) is a lethal multiple congenital anomalies syndrome, characterized by the presence of 5 major malformations: midline supraumbilical abdominal wall defect, lower sternal defect, diaphragmatic pericardial defect, anterior diaphragmatic defect and various intracardiac malformations. Ectopia cordis (EC) is often found in fetuses with POC.
XK aprosencephaly- MedGen UID:
- 167087
- •Concept ID:
- C0795952
- •
- Disease or Syndrome
A rare syndromic type of cerebral malformation with characteristics of aprosencephaly (absence of telencephalon and diencephalon), oculo-facial anomalies (such as ocular hypotelorism or cyclopia, malformation/absence of nasal structures, cleft lip), preaxial limb defects (such as hypoplastic hands, absent halluces) and various other anomalies including ambiguous genitalia, imperforate anus, and vertebral anomalies.
Hydrolethalus syndrome 1- MedGen UID:
- 343455
- •Concept ID:
- C1856016
- •
- Disease or Syndrome
Hydrolethalus-1 (HLS1) is an autosomal recessive lethal malformation syndrome characterized by hydrocephaly with absent upper midline structures of the brain, micrognathia, and polydactyly. Various other features such as cleft lip or palate, club feet, anomalies of the ears, eyes, and nose, keyhole-shaped defect in the occipital bone, abnormal genitalia, and congenital heart and respiratory organ defects have also been observed in affected individuals. Affected individuals are stillborn or die shortly after birth (summary by Mee et al., 2005).
Genetic Heterogeneity of Hydrolethalus Syndrome
See also HLS2 (614120), caused by mutation in the KIF7 gene (611254) on chromosome 15q26.
Meckel syndrome, type 2- MedGen UID:
- 351059
- •Concept ID:
- C1864148
- •
- Disease or Syndrome
Meckel syndrome is a rare autosomal recessive lethal condition characterized by an occipital meningoencephalocele, enlarged kidneys with multicystic dysplasia and fibrotic changes in the portal area of the liver and with ductal proliferation, and postaxial polydactyly. For a more complete phenotypic description and information on genetic heterogeneity, see MKS1 (249000).
Meckel syndrome, type 5- MedGen UID:
- 409740
- •Concept ID:
- C1969052
- •
- Disease or Syndrome
Meckel syndrome is a disorder with severe signs and symptoms that affect many parts of the body. The most common features are enlarged kidneys with numerous fluid-filled cysts; an occipital encephalocele, which is a sac-like protrusion of the brain through an opening at the back of the skull; and the presence of extra fingers and toes (polydactyly). Most affected individuals also have a buildup of scar tissue (fibrosis) in the liver.\n\nBecause of their serious health problems, most individuals with Meckel syndrome die before or shortly after birth. Most often, affected infants die of respiratory problems or kidney failure.\n\nOther signs and symptoms of Meckel syndrome vary widely among affected individuals. Numerous abnormalities of the brain and spinal cord (central nervous system) have been reported in people with Meckel syndrome, including a group of birth defects known as neural tube defects. These defects occur when a structure called the neural tube, a layer of cells that ultimately develops into the brain and spinal cord, fails to close completely during the first few weeks of embryonic development. Meckel syndrome can also cause problems with development of the eyes and other facial features, heart, bones, urinary system, and genitalia.
Meckel syndrome, type 4- MedGen UID:
- 410003
- •Concept ID:
- C1970161
- •
- Disease or Syndrome
Meckel syndrome is an autosomal recessive pre- or perinatal lethal disorder characterized by a combination of renal cysts and variably associated features including developmental anomalies of the central nervous system (typically occipital encephalocele), hepatic ductal dysplasia and cysts, and postaxial polydactyly (summary by Baala et al., 2007).
For a more complete phenotypic description and information on genetic heterogeneity of Meckel syndrome, see MKS1 (249000).
Meckel syndrome, type 6- MedGen UID:
- 382942
- •Concept ID:
- C2676790
- •
- Disease or Syndrome
Other signs and symptoms of Meckel syndrome vary widely among affected individuals. Numerous abnormalities of the brain and spinal cord (central nervous system) have been reported in people with Meckel syndrome, including a group of birth defects known as neural tube defects. These defects occur when a structure called the neural tube, a layer of cells that ultimately develops into the brain and spinal cord, fails to close completely during the first few weeks of embryonic development. Meckel syndrome can also cause problems with development of the eyes and other facial features, heart, bones, urinary system, and genitalia.\n\nBecause of their serious health problems, most individuals with Meckel syndrome die before or shortly after birth. Most often, affected infants die of respiratory problems or kidney failure.\n\nMeckel syndrome is a disorder with severe signs and symptoms that affect many parts of the body. The most common features are enlarged kidneys with numerous fluid-filled cysts; an occipital encephalocele, which is a sac-like protrusion of the brain through an opening at the back of the skull; and the presence of extra fingers and toes (polydactyly). Most affected individuals also have a buildup of scar tissue (fibrosis) in the liver.
Hydrolethalus syndrome 2- MedGen UID:
- 481529
- •Concept ID:
- C3279899
- •
- Disease or Syndrome
Hydrolethalus syndrome is an autosomal recessive embryonic lethal disorder characterized by hydrocephaly or anencephaly, postaxial polydactyly of the upper limbs, and pre- or postaxial polydactyly of the lower limbs. Duplication of the hallux is a common finding. HLS2 is considered a ciliopathy (summary by Putoux et al., 2011).
Acrocallosal syndrome (ACLS; 200990) is an allelic disorder with a less severe phenotype.
For a discussion of genetic heterogeneity of hydrolethalus syndrome, see 236680.
Meckel syndrome, type 10- MedGen UID:
- 481666
- •Concept ID:
- C3280036
- •
- Disease or Syndrome
Meckel syndrome is a disorder with severe signs and symptoms that affect many parts of the body. The most common features are enlarged kidneys with numerous fluid-filled cysts; an occipital encephalocele, which is a sac-like protrusion of the brain through an opening at the back of the skull; and the presence of extra fingers and toes (polydactyly). Most affected individuals also have a buildup of scar tissue (fibrosis) in the liver.\n\nBecause of their serious health problems, most individuals with Meckel syndrome die before or shortly after birth. Most often, affected infants die of respiratory problems or kidney failure.\n\nOther signs and symptoms of Meckel syndrome vary widely among affected individuals. Numerous abnormalities of the brain and spinal cord (central nervous system) have been reported in people with Meckel syndrome, including a group of birth defects known as neural tube defects. These defects occur when a structure called the neural tube, a layer of cells that ultimately develops into the brain and spinal cord, fails to close completely during the first few weeks of embryonic development. Meckel syndrome can also cause problems with development of the eyes and other facial features, heart, bones, urinary system, and genitalia.
Meckel syndrome, type 1- MedGen UID:
- 811346
- •Concept ID:
- C3714506
- •
- Disease or Syndrome
Meckel syndrome, also known as Meckel-Gruber syndrome, is a severe pleiotropic autosomal recessive developmental disorder caused by dysfunction of primary cilia during early embryogenesis. There is extensive clinical variability and controversy as to the minimum diagnostic criteria. Early reports, including that of Opitz and Howe (1969) and Wright et al. (1994), stated that the classic triad of Meckel syndrome comprises (1) cystic renal disease; (2) a central nervous system malformation, most commonly occipital encephalocele; and (3) polydactyly, most often postaxial. However, based on a study of 67 patients, Salonen (1984) concluded that the minimum diagnostic criteria are (1) cystic renal disease; (2) CNS malformation, and (3) hepatic abnormalities, including portal fibrosis or ductal proliferation. In a review of Meckel syndrome, Logan et al. (2011) stated that the classic triad first described by Meckel (1822) included occipital encephalocele, cystic kidneys, and fibrotic changes to the liver.
Genetic Heterogeneity of Meckel Syndrome
See also MKS2 (603194), caused by mutation in the TMEM216 gene (613277) on chromosome 11q12; MKS3 (607361), caused by mutation in the TMEM67 gene (609884) on chromosome 8q; MKS4 (611134), caused by mutation in the CEP290 gene (610142) on chromosome 12q; MKS5 (611561), caused by mutation in the RPGRIP1L gene (610937) on chromosome 16q12; MKS6 (612284), caused by mutation in the CC2D2A gene (612013) on chromosome 4p15; MKS7 (267010), caused by mutation in the NPHP3 (608002) gene on chromosome 3q22; MKS8 (613885), caused by mutation in the TCTN2 gene (613846) on chromosome 12q24; MKS9 (614209), caused by mutation in the B9D1 gene (614144) on chromosome 17p11; MKS10 (614175), caused by mutation in the B9D2 gene (611951) on chromosome 19q13; MKS11 (615397), caused by mutation in the TMEM231 gene (614949) on chromosome 16q23; MKS12 (616258), caused by mutation in the KIF14 gene (611279) on chromosome 1q32; MKS13 (617562), caused by mutation in the TMEM107 gene (616183) on chromosome 17p13; and MKS14 (619879), caused by mutation in the TXNDC15 gene (617778) on chromosome 5q31.
Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A13- MedGen UID:
- 815372
- •Concept ID:
- C3809042
- •
- Disease or Syndrome
Congenital muscular dystrophy-dystroglycanopathy with brain and eye anomalies (type A) is a autosomal recessive disorder associated with severe neurologic defects and resulting in early infantile death. The phenotype includes the alternative clinical designations Walker-Warburg syndrome (WWS) and muscle-eye-brain disease (MEB). The disorder represents the most severe end of a phenotypic spectrum of similar disorders resulting from defective glycosylation of alpha-dystroglycan (DAG1; 128239), collectively known as dystroglycanopathies (summary by Buysse et al., 2013).
For a general phenotypic description and a discussion of genetic heterogeneity of muscular dystrophy-dystroglycanopathy type A, see MDDGA1 (236670).
Neural tube defects, susceptibility to- MedGen UID:
- 856010
- •Concept ID:
- C3891448
- •
- Finding
Neural tube defects are the second most common type of birth defect after congenital heart defects. The 2 most common NTDs are open spina bifida, also known as spina bifida cystica (SBC) or myelomeningocele, and anencephaly (see 206500) (Detrait et al., 2005). Spina bifida occulta (SBO), a bony defect of the spine covered by normal skin, is a mild form of spina bifida that is often asymptomatic. The term 'spinal dysraphia' refers to both SBC and SBO (Botto et al., 1999; Fineman et al., 1982). The most severe neural tube defect, craniorachischisis (CRN), leaves the neural tube open from the midbrain or rostral hindbrain to the base of the spine (summary by Robinson et al., 2012).
Neural tube defects represent a complex trait with multifactorial etiology encompassing both genetic and environmental components (summary by Bartsch et al., 2012 and Lei et al., 2014).
An X-linked form of spina bifida has been suggested; see 301410. See also folate-sensitive neural tube defects (601634), which are caused by genes involved in folate metabolism.
Short-rib thoracic dysplasia 14 with polydactyly- MedGen UID:
- 901479
- •Concept ID:
- C4225286
- •
- Disease or Syndrome
Short-rib thoracic dysplasia (SRTD) with or without polydactyly refers to a group of autosomal recessive skeletal ciliopathies that are characterized by a constricted thoracic cage, short ribs, shortened tubular bones, and a 'trident' appearance of the acetabular roof. SRTD encompasses Ellis-van Creveld syndrome (EVC) and the disorders previously designated as Jeune syndrome or asphyxiating thoracic dystrophy (ATD), short rib-polydactyly syndrome (SRPS), and Mainzer-Saldino syndrome (MZSDS). Polydactyly is variably present, and there is phenotypic overlap in the various forms of SRTDs, which differ by visceral malformation and metaphyseal appearance. Nonskeletal involvement can include cleft lip/palate as well as anomalies of major organs such as the brain, eye, heart, kidneys, liver, pancreas, intestines, and genitalia. Some forms of SRTD are lethal in the neonatal period due to respiratory insufficiency secondary to a severely restricted thoracic cage, whereas others are compatible with life (summary by Huber and Cormier-Daire, 2012 and Schmidts et al., 2013).
There is phenotypic overlap with the cranioectodermal dysplasias (Sensenbrenner syndrome; see CED1, 218330).
For a discussion of genetic heterogeneity of short-rib thoracic dysplasia with or without polydactyly, see SRTD1 (208500).
Chromosome 13q33-q34 deletion syndrome- MedGen UID:
- 1744234
- •Concept ID:
- C5436890
- •
- Disease or Syndrome
Chromosome 13q33-q34 deletion syndrome is associated with developmental delay and/or impaired intellectual development, facial dysmorphism, and an increased risk for epilepsy, cardiac defects and additional anatomic anomalies (summary by Sagi-Dain et al., 2019).
Anencephaly 1- MedGen UID:
- 1794138
- •Concept ID:
- C5561928
- •
- Congenital Abnormality
Anencephaly is characterized by the absence of cranial vault and brain tissues in the fetus. It is considered an extreme form of neural tube defect (182940) (summary by Singh et al., 2017).
Genetic Heterogeneity of Anencephaly
See also anencephaly-2 (ANPH2; 619452), caused by mutation in the NUAK12 gene (608131) on chromosome 1q32.
Anencephaly 2- MedGen UID:
- 1794155
- •Concept ID:
- C5561945
- •
- Congenital Abnormality
Anencephaly-2 (ANPH2) is a severe neural tube defect caused by failure of neural tube closure anteriorly. Features in addition to anencephaly may include frontonasal dysplasia with midline cleft of the upper lip and alveolar ridge, bifid nose, and clinical anophthalmia.
For a discussion of genetic heterogeneity of anencephaly, see ANPH1 (206500).