U.S. flag

An official website of the United States government

Format

Send to:

Choose Destination

Search results

Items: 4

  • The following terms were not found in MedGen: I9.opetaopcapital, Cyrillic.
1.

Low density lipoprotein cholesterol level quantitative trait locus 3

Low density lipoprotein (LDL) cholesterol level quantitative trait locus 3 (LDLCQ3) represents regulation of LDL cholesterol by 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase (HMGCR), the rate-limiting enzyme in the cholesterol biosynthesis pathway. HMGCR is inhibited by statins, a class of cholesterol-lowering drugs whose efficacy is influenced by variation in the HMGCR gene (summary by Yu et al., 2014). [from OMIM]

MedGen UID:
854805
Concept ID:
C3888197
Finding
2.

Cataract 13 with adult I phenotype

The i and I antigens of the I blood group system (110800) are carbohydrate structures carried on glycolipids and glycoproteins and are characterized as straight or branched glycochains composed of repeating N-acetyllactosamine (LacNAc) units, respectively. Conversion of i antigen into an I-active structure requires the activity of the I-branching enzyme, beta-1,6-N-acetylglucosaminyltransferase (GCNT2; 600429), which adds the decisive GlcNAc-beta-1-6 branch onto the straight poly-LacNAc chains. Expression of the i and I antigens on red blood cells (RBCs) is reciprocal and developmentally regulated. Adult human RBCs predominantly express I antigen, whereas fetal and neonatal RBCs predominantly express i antigen. After birth, I antigen levels increase gradually as i antigen levels fall, with the normal Ii status of adult RBCs reached after about 13 to 20 months. Mutations that specifically affect 1 of the 3 variants produced by the GCNT2 gene cause the rare adult i phenotype (see 110800), in which adult RBCs are rich in i antigen and contain low levels of I antigen. Mutations that eliminate all 3 GCNT2 variants cause the adult i phenotype with congenital cataract (review by Yu and Lin, 2011). [from OMIM]

MedGen UID:
811703
Concept ID:
C3805373
Disease or Syndrome
3.

Partial congenital absence of teeth

Tooth agenesis in some form is a common human anomaly that affects approximately 20% of the population. Although tooth agenesis is associated with numerous syndromes, several case reports describe nonsyndromic forms that are either sporadic or familial in nature, as reviewed by Gorlin et al. (1990). The incidence of familial tooth agenesis varies with each class of teeth. Most commonly affected are third molars (wisdom teeth), followed by either upper lateral incisors or lower second premolars; agenesis involving first and second molars is very rare. Also see 114600 and 302400. Selective tooth agenesis without associated systemic disorders has sometimes been divided into 2 types: oligodontia, defined as agenesis of 6 or more permanent teeth, and hypodontia, defined as agenesis of less than 6 teeth. The number in both cases does not include absence of third molars (wisdom teeth). Faulty use of the terms, however, have confounded their use. The term 'partial anodontia' is obsolete (Salinas, 1978). Genetic Heterogeneity of Selective Tooth Agenesis Other forms of selective tooth agenesis include STHAG2 (602639), mapped to chromosome 16q12; STHAG3 (604625), caused by mutation in the PAX9 gene (167416) on chromosome 14q12; STHAG4 (150400), caused by mutation in the WNT10A gene (606268) on chromosome 2q35; STHAG5 (610926), mapped to chromosome 10q11; STHAG7 (616724), caused by mutation in the LRP6 gene (603507) on chromosome 12p13; STHAG8 (617073), caused by mutation in the WNT10B gene (601906) on chromosome 12q13; STHAG9 (617275), caused by mutation in the GREM2 gene (608832) on chromosome 1q43; STHAG10 (620173), caused by mutation in the TSPEAR gene (612920) on chromosome 21q22; and STHAGX1 (313500), caused by mutation in the EDA gene (300451) on chromosome Xq13. A type of selective tooth agenesis that was formerly designated STHAG6 has been incorporated into the dental anomalies and short stature syndrome (DASS; 601216). Of 34 unrelated patients with nonsyndromic tooth agenesis, van den Boogaard et al. (2012) found that 56% (19 patients) had mutations in the WNT10A gene (STHAG4), whereas only 3% and 9% had mutations in the MSX1 (STHAG1) and PAX9 (STHAG3) genes, respectively. The authors concluded that WNT10A is a major gene in the etiology of isolated hypodontia. Genotype-Phenotype Correlations Yu et al. (2016) observed that the most frequently missing permanent teeth in WNT10B-associated oligodontia were the lateral incisors (83.3%), whereas premolars were missing only 51.4% of the time, which they noted was a pattern 'clearly different' from the oligodontia patterns resulting from WNT10A mutations. They also stated that the selective pattern in WNT10B mutants was different from that associated with mutations in other genes, such as MSX1, in which second premolars are missing, and PAX9, in which there is agenesis of molars. [from OMIM]

MedGen UID:
43794
Concept ID:
C0020608
Congenital Abnormality
4.

Oculopharyngodistal myopathy 3

Oculopharyngodistal myopathy-3 (OPDM3) is a neuromyodegenerative disease characterized by progressive muscle weakness with ocular, facial, pharyngeal, and distal limb involvement, resulting in dysarthria and gait difficulties. The onset of the disorder is usually in adulthood, although childhood onset has rarely been reported. Additional features include hyporeflexia, proximal muscle weakness, neck muscle weakness, dysarthria, dysphagia, and ptosis. Some patients may develop pigmentary retinopathy, peripheral neuropathy, or hearing loss. Cognition is usually not affected, but there may be deficits or psychiatric manifestations. Brain imaging tends to show a leukoencephalopathy, often with a characteristic linear signal along the corticomedullary junction on brain imaging. Skin and muscle biopsy show intranuclear inclusions and rimmed vacuoles. Many of the clinical features are reminiscent of NIID, suggesting that these disorders likely fall within a broad phenotypic spectrum of diseases with neuromyodegenerative features associated with abnormal repeat expansions in this gene (summary by Ogasawara et al., 2020 and Yu et al., 2021). For a discussion of genetic heterogeneity of OPDM, see OPDM1 (164310). [from OMIM]

MedGen UID:
1794166
Concept ID:
C5561956
Disease or Syndrome
Format

Send to:

Choose Destination

Supplemental Content

Find related data

Search details

See more...