U.S. flag

An official website of the United States government

Format
Items per page

Send to:

Choose Destination

Search results

Items: 1 to 20 of 167

  • The following terms were not found in MedGen: Benzylpiperazino, 4-Benzylpiperazino, nitrobenzenecarbaldehyde, -3-nitrobenzenecarbaldehyde.
1.

Type 2 diabetes mellitus

Type 2 diabetes mellitus is distinct from maturity-onset diabetes of the young (see 606391) in that it is polygenic, characterized by gene-gene and gene-environment interactions with onset in adulthood, usually at age 40 to 60 but occasionally in adolescence if a person is obese. The pedigrees are rarely multigenerational. The penetrance is variable, possibly 10 to 40% (Fajans et al., 2001). Persons with type 2 diabetes usually have an obese body habitus and manifestations of the so-called metabolic syndrome (see 605552), which is characterized by diabetes, insulin resistance, hypertension, and hypertriglyceridemia. Genetic Heterogeneity of Susceptibility to Type 2 Diabetes Susceptibility to T2D1 (601283) is conferred by variation in the calpain-10 gene (CAPN10; 605286) on chromosome 2q37. The T2D2 locus (601407) on chromosome 12q was found in a Finnish population. The T2D3 locus (603694) maps to chromosome 20. The T2D4 locus (608036) maps to chromosome 5q34-q35. Susceptibility to T2D5 (616087) is conferred by variation in the TBC1D4 gene (612465) on chromosome 13q22. A mutation has been observed in hepatocyte nuclear factor-4-alpha (HNF4A; 600281.0004) in a French family with NIDDM of late onset. Mutations in the NEUROD1 gene (601724) on chromosome 2q32 were found to cause type 2 diabetes mellitus in 2 families. Mutation in the GLUT2 glucose transporter was associated with NIDDM in 1 patient (138160.0001). Mutation in the MAPK8IP1 gene, which encodes the islet-brain-1 protein, was found in a family with type 2 diabetes in individuals in 4 successive generations (604641.0001). Polymorphism in the KCNJ11 gene (600937.0014) confers susceptibility. In French white families, Vionnet et al. (2000) found evidence for a susceptibility locus for type 2 diabetes on 3q27-qter. They confirmed the diabetes susceptibility locus on 1q21-q24 reported by Elbein et al. (1999) in whites and by Hanson et al. (1998) in Pima Indians. A mutation in the GPD2 gene (138430.0001) on chromosome 2q24.1, encoding mitochondrial glycerophosphate dehydrogenase, was found in a patient with type 2 diabetes mellitus and in his glucose-intolerant half sister. Mutations in the PAX4 gene (167413) have been identified in patients with type 2 diabetes. Triggs-Raine et al. (2002) stated that in the Oji-Cree, a gly319-to-ser change in HNF1-alpha (142410.0008) behaves as a susceptibility allele for type 2 diabetes. Mutation in the HNF1B gene (189907.0007) was found in 2 Japanese patients with typical late-onset type 2 diabetes. Mutations in the IRS1 gene (147545) have been found in patients with type 2 diabetes. A missense mutation in the AKT2 gene (164731.0001) caused autosomal dominant type 2 diabetes in 1 family. A (single-nucleotide polymorphism) SNP in the 3-prime untranslated region of the resistin gene (605565.0001) was associated with susceptibility to diabetes and to insulin resistance-related hypertension in Chinese subjects. Susceptibility to insulin resistance has been associated with polymorphism in the TCF1 (142410.0011), PPP1R3A (600917.0001), PTPN1 (176885.0001), ENPP1 (173335.0006), IRS1 (147545.0002), and EPHX2 (132811.0001) genes. The K121Q polymorphism of ENPP1 (173335.0006) is associated with susceptibility to type 2 diabetes; a haplotype defined by 3 SNPs of this gene, including K121Q, is associated with obesity, glucose intolerance, and type 2 diabetes. A SNP in the promoter region of the hepatic lipase gene (151670.0004) predicts conversion from impaired glucose tolerance to type 2 diabetes. Variants of transcription factor 7-like-2 (TCF7L2; 602228.0001), located on 10q, have also been found to confer risk of type 2 diabetes. A common sequence variant, rs10811661, on chromosome 9p21 near the CDKN2A (600160) and CDKN2B (600431) genes has been associated with risk of type 2 diabetes. Variation in the PPARG gene (601487) has been associated with risk of type 2 diabetes. A promoter polymorphism in the IL6 gene (147620) is associated with susceptibility to NIDDM. Variation in the KCNJ15 gene (602106) has been associated with T2DM in lean Asians. Variation in the SLC30A8 gene (611145) has been associated with susceptibility to T2D. Variation in the HMGA1 gene (600701.0001) is associated with an increased risk of type 2 diabetes. Mutation in the MTNR1B gene (600804) is associated with susceptibility to type 2 diabetes. Protection Against Type 2 Diabetes Mellitus Protein-truncating variants in the SLC30A8 (611145) have been associated with a reduced risk for T2D. [from OMIM]

MedGen UID:
41523
Concept ID:
C0011860
Disease or Syndrome
2.

Hereditary spherocytosis type 4

People with the mild form may have very mild anemia or sometimes have no symptoms. People with the moderate form typically have anemia, jaundice, and splenomegaly. Many also develop gallstones. The signs and symptoms of moderate hereditary spherocytosis usually appear in childhood. Individuals with the moderate/severe form have all the features of the moderate form but also have severe anemia. Those with the severe form have life-threatening anemia that requires frequent blood transfusions to replenish their red blood cell supply. They also have severe splenomegaly, jaundice, and a high risk for developing gallstones. Some individuals with the severe form have short stature, delayed sexual development, and skeletal abnormalities.

There are four forms of hereditary spherocytosis, which are distinguished by the severity of signs and symptoms. They are known as the mild form, the moderate form, the moderate/severe form, and the severe form. It is estimated that 20 to 30 percent of people with hereditary spherocytosis have the mild form, 60 to 70 percent have the moderate form, 10 percent have the moderate/severe form, and 3 to 5 percent have the severe form.

Hereditary spherocytosis is a condition that affects red blood cells. People with this condition typically experience a shortage of red blood cells (anemia), yellowing of the eyes and skin (jaundice), and an enlarged spleen (splenomegaly). Most newborns with hereditary spherocytosis have severe anemia, although it improves after the first year of life. Splenomegaly can occur anytime from early childhood to adulthood. About half of affected individuals develop hard deposits in the gallbladder called gallstones, which typically occur from late childhood to mid-adulthood. [from MedlinePlus Genetics]

MedGen UID:
436375
Concept ID:
C2675212
Disease or Syndrome
3.

Multiple endocrine neoplasia type 4

Multiple endocrine neoplasia is a group of disorders that affect the body's network of hormone-producing glands called the endocrine system. Hormones are chemical messengers that travel through the bloodstream and regulate the function of cells and tissues throughout the body. Multiple endocrine neoplasia typically involves tumors (neoplasia) in at least two endocrine glands; tumors can also develop in other organs and tissues. These growths can be noncancerous (benign) or cancerous (malignant). If the tumors become cancerous, the condition can be life-threatening.

The major forms of multiple endocrine neoplasia are called type 1, type 2, and type 4. These types are distinguished by the genes involved, the types of hormones made, and the characteristic signs and symptoms.

Many different types of tumors are associated with multiple endocrine neoplasia. Type 1 frequently involves tumors of the parathyroid glands, the pituitary gland, and the pancreas. Tumors in these glands can lead to the overproduction of hormones. The most common sign of multiple endocrine neoplasia type 1 is overactivity of the parathyroid glands (hyperparathyroidism). Hyperparathyroidism disrupts the normal balance of calcium in the blood, which can lead to kidney stones, thinning of bones, nausea and vomiting, high blood pressure (hypertension), weakness, and fatigue.

Multiple endocrine neoplasia type 4 appears to have signs and symptoms similar to those of type 1, although it is caused by mutations in a different gene. Hyperparathyroidism is the most common feature, followed by tumors of the pituitary gland, additional endocrine glands, and other organs.

The most common sign of multiple endocrine neoplasia type 2 is a form of thyroid cancer called medullary thyroid carcinoma. Some people with this disorder also develop a pheochromocytoma, which is an adrenal gland tumor that can cause dangerously high blood pressure. Multiple endocrine neoplasia type 2 is divided into three subtypes: type 2A, type 2B (formerly called type 3), and familial medullary thyroid carcinoma (FMTC). These subtypes differ in their characteristic signs and symptoms and risk of specific tumors; for example, hyperparathyroidism occurs only in type 2A, and medullary thyroid carcinoma is the only feature of FMTC. The signs and symptoms of multiple endocrine neoplasia type 2 are relatively consistent within any one family. [from MedlinePlus Genetics]

MedGen UID:
373469
Concept ID:
C1970712
Neoplastic Process
4.

Acute myeloid leukemia

A clonal expansion of myeloid blasts in the bone marrow, blood or other tissues. The classification of acute myeloid leukemias (AMLs) encompasses four major categories: 1) AML with recurrent genetic abnormalities; 2) AML with multilineage dysplasia; 3) Therapy-related AML; 4) AML not otherwise specified. The required bone marrow or peripheral blood blast percentage for the diagnosis of AML is 20% (WHO classification) [from NCBI]

MedGen UID:
9730
Concept ID:
C0023467
Neoplastic Process
5.

Polysyndactyly 4

Although both preaxial polydactyly and syndactyly are cardinal features of this malformation, it is classified as a form of polydactyly because syndactyly does not occur in the absence of polydactyly (McClintic, 1935), the opposite not being true. On the other hand, polysyndactyly is here classified as a type of syndactyly because polydactyly (of the third or fourth fingers and fifth toes) does not occur in the absence of syndactyly. The thumb shows only the mildest degree of duplication, and syndactyly of various degrees affects fingers 3 and 4. The foot malformation is more constant and consists of duplication of part or all of the first or second toes and syndactyly affects all of the toes, especially the second and third. [from OMIM]

MedGen UID:
357420
Concept ID:
C1868111
Congenital Abnormality
6.

Retinitis pigmentosa 4

Any retinitis pigmentosa in which the cause of the disease is a mutation in the RHO gene. [from MONDO]

MedGen UID:
462351
Concept ID:
C3151001
Disease or Syndrome
7.

Split hand-foot malformation 4

The TP63-related disorders comprise six overlapping phenotypes: Ankyloblepharon-ectodermal defects-cleft lip/palate (AEC) syndrome (which includes Rapp-Hodgkin syndrome). Acro-dermo-ungual-lacrimal-tooth (ADULT) syndrome. Ectrodactyly, ectodermal dysplasia, cleft lip/palate syndrome 3 (EEC3). Limb-mammary syndrome. Split-hand/foot malformation type 4 (SHFM4). Isolated cleft lip/cleft palate (orofacial cleft 8). Individuals typically have varying combinations of ectodermal dysplasia (hypohidrosis, nail dysplasia, sparse hair, tooth abnormalities), cleft lip/palate, split-hand/foot malformation/syndactyly, lacrimal duct obstruction, hypopigmentation, hypoplastic breasts and/or nipples, and hypospadias. Findings associated with a single phenotype include ankyloblepharon filiforme adnatum (tissue strands that completely or partially fuse the upper and lower eyelids), skin erosions especially on the scalp associated with areas of scarring, and alopecia, trismus, and excessive freckling. [from GeneReviews]

MedGen UID:
343120
Concept ID:
C1854442
Disease or Syndrome
8.

Bardet-Biedl syndrome 4

BBS4 is a rare multisystemic disorder characterized primarily by retinal dystrophy, obesity, polydactyly, and renal dysfunction that accounts for less than 3% of BBS (Katsanis et al., 2002). Anosmia has been described in patients with BBS4 (Iannaccone et al., 2005), as well as polydactyly confined to the hands (Carmi et al., 1995). For a general phenotypic description and a discussion of genetic heterogeneity of Bardet-Biedl syndrome, see BBS1 (209900). [from OMIM]

MedGen UID:
423627
Concept ID:
C2936864
Disease or Syndrome
9.

Glycogen storage disease, type IV

The clinical manifestations of glycogen storage disease type IV (GSD IV) discussed in this entry span a continuum of different subtypes with variable ages of onset, severity, and clinical features. Clinical findings vary extensively both within and between families. The fatal perinatal neuromuscular subtype presents in utero with fetal akinesia deformation sequence, including decreased fetal movements, polyhydramnios, and fetal hydrops. Death usually occurs in the neonatal period. The congenital neuromuscular subtype presents in the newborn period with profound hypotonia, respiratory distress, and dilated cardiomyopathy. Death usually occurs in early infancy. Infants with the classic (progressive) hepatic subtype may appear normal at birth, but rapidly develop failure to thrive; hepatomegaly, liver dysfunction, and progressive liver cirrhosis; hypotonia; and cardiomyopathy. Without liver transplantation, death from liver failure usually occurs by age five years. Children with the non-progressive hepatic subtype tend to present with hepatomegaly, liver dysfunction, myopathy, and hypotonia; however, they are likely to survive without progression of the liver disease and may not show cardiac, skeletal muscle, or neurologic involvement. The childhood neuromuscular subtype is rare and the course is variable, ranging from onset in the second decade with a mild disease course to a more severe, progressive course resulting in death in the third decade. [from GeneReviews]

MedGen UID:
6642
Concept ID:
C0017923
Disease or Syndrome
10.

Nephronophthisis 4

The nephronophthisis (NPH) phenotype is characterized by reduced renal concentrating ability, chronic tubulointerstitial nephritis, cystic renal disease, and progression to end-stage renal disease (ESRD) before age 30 years. Three age-based clinical subtypes are recognized: infantile, juvenile, and adolescent/adult. Infantile NPH can present in utero with oligohydramnios sequence (limb contractures, pulmonary hypoplasia, and facial dysmorphisms) or postnatally with renal manifestations that progress to ESRD before age 3 years. Juvenile NPH, the most prevalent subtype, typically presents with polydipsia and polyuria, growth retardation, chronic iron-resistant anemia, or other findings related to chronic kidney disease (CKD). Hypertension is typically absent due to salt wasting. ESRD develops at a median age of 13 years. Ultrasound findings are increased echogenicity, reduced corticomedullary differentiation, and renal cysts (in 50% of affected individuals). Histologic findings include tubulointerstitial fibrosis, thickened and disrupted tubular basement membrane, sporadic corticomedullary cysts, and normal or reduced kidney size. Adolescent/adult NPH is clinically similar to juvenile NPH, but ESRD develops at a median age of 19 years. Within a subtype, inter- and intrafamilial variability in rate of progression to ESRD is considerable. Approximately 80%-90% of individuals with the NPH phenotype have no extrarenal features (i.e., they have isolated NPH); ~10%-20% have extrarenal manifestations that constitute a recognizable syndrome (e.g., Joubert syndrome, Bardet-Biedl syndrome, Jeune syndrome and related skeletal disorders, Meckel-Gruber syndrome, Senior-Løken syndrome, Leber congenital amaurosis, COACH syndrome, and oculomotor apraxia, Cogan type). [from GeneReviews]

MedGen UID:
339667
Concept ID:
C1847013
Disease or Syndrome
11.

Schizophrenia

Schizophrenia is highly heritable, as shown by family, twin, and adoption studies. For example, for identical twins, if one twin develops schizophrenia, the other twin has about a 50% chance of also developing the disease. The risk of the general population developing the schizophrenia is about 0.3-0.7% worldwide. The search for “schizophrenia genes” has been elusive. Initial linkage studies looked at parts of the genome associated with schizophrenia, and many candidate genes were identified, including APOE, COMT, DAO, DRD1, DRD2, DRD4, DTNBP1, GABRB2, GRIN2B, HP, IL1B, MTHFR, PLXNA2, SLC6A4, TP53, and TPH1. However, some of these have later been questioned. Microdeletions and microduplications have been found to be three times more common in individuals with schizophrenia, compared to controls. Because these deletions and duplications are in genes that are overexpressed in pathways related to brain development, it is possible that the inheritance of multiple rare variants may contribute to the development of schizophrenia. Several genetic disorders feature schizophrenia as a clinical feature. The 22q11.2 Deletion Syndrome comprises many different syndromes, of which one of the most serious is DiGeorge syndrome. Children born with DiGeorge syndrome typically have heart defects, cleft palate, learning difficulties, and immune deficiency. Schizophrenia is a late manifestation, affecting around 30% of individuals. Microdeletions and duplications in chromosome 1, 2, 3, 7, 15 and 16 have also been associated with schizophrenia. In 2014, a genome-wide association study looked at the genomes of over 35,000 patients and 110,00 controls. The study identified 108 SNPs that were associated with schizophrenia, 83 of which had not been previously reported. As expected, many of these loci occurred in genes that are expressed in the brain. For example, the SNPs included a gene that encodes the dopamine D2 receptor, DRD2 (the target of antipsychotic drugs), and many genes involved in glutamine neurotransmitter pathways and synaptic plasticity (e.g., GRM3, GRIN2A, SRR, GRIA1). More surprisingly, however, associations were also enriched among genes expressed in tissues with important immune functions. In 2016, a study based on nearly 65,000 people investigated the association between schizophrenia and variation in the Major Histocompatibility Complex (MHC) locus—a region on chromosome 6 that is important for immune function. The study focused on the C4 gene (complement component 4) that exists as two distinct genes: C4A and C4B, which encode particularly structurally diverse alleles. The study found that the alleles which promoted greater expression of C4A in the brain were associated with a greater risk of schizophrenia. By using mice models, the study showed that C4 is involved in the elimination of synapses during brain maturation. In humans, “synaptic pruning” is most active during late adolescence, which coincides with the typical onset of symptoms of schizophrenia. It is therefore possible that the inheritance of specific C4A alleles could lead to “run away” synaptic pruning, increasing the risk of schizophrenia. Further research may even determine C4 as a potential therapeutic target. [from Medical Genetics Summaries]

MedGen UID:
48574
Concept ID:
C0036341
Mental or Behavioral Dysfunction
12.

Hypogonadotropic hypogonadism 4 with or without anosmia

Isolated gonadotropin-releasing hormone (GnRH) deficiency (IGD) is characterized by inappropriately low serum concentrations of the gonadotropins LH (luteinizing hormone) and FSH (follicle-stimulating hormone) in the presence of low circulating concentrations of sex steroids. IGD is associated with a normal sense of smell (normosmic IGD) in approximately 40% of affected individuals and an impaired sense of smell (Kallmann syndrome) in approximately 60%. IGD can first become apparent in infancy, adolescence, or adulthood. Infant boys with congenital IGD often have micropenis and cryptorchidism. Adolescents and adults with IGD have clinical evidence of hypogonadism and incomplete sexual maturation on physical examination. Adult males with IGD tend to have prepubertal testicular volume (i.e., <4 mL), absence of secondary sexual features (e.g., facial and axillary hair growth, deepening of the voice), decreased muscle mass, diminished libido, erectile dysfunction, and infertility. Adult females have little or no breast development and primary amenorrhea. Although skeletal maturation is delayed, the rate of linear growth is usually normal except for the absence of a distinct pubertal growth spurt. [from GeneReviews]

MedGen UID:
765257
Concept ID:
C3552343
Disease or Syndrome
13.

Waardenburg syndrome type 3

Waardenburg syndrome type 3 is an auditory-pigmentary syndrome characterized by pigmentary abnormalities of the hair, skin, and eyes; congenital sensorineural hearing loss; presence of 'dystopia canthorum,' the lateral displacement of the ocular inner canthi; and upper limb abnormalities (reviews by Read and Newton, 1997 and Pingault et al., 2010). WS type 3 is also referred to as 'Klein-Waardenburg syndrome' (Gorlin et al., 1976). Clinical Variability of Waardenburg Syndrome Types 1-4 Waardenburg syndrome has been classified into 4 main phenotypes. Type I Waardenburg syndrome (WS1; 193500) is characterized by pigmentary abnormalities of the hair, including a white forelock and premature graying; pigmentary changes of the iris, such as heterochromia iridis and brilliant blue eyes; congenital sensorineural hearing loss; and 'dystopia canthorum.' WS type II (WS2) is distinguished from type I by the absence of dystopia canthorum. WS type III has dystopia canthorum and is distinguished by the presence of upper limb abnormalities. WS type IV (WS4; 277580), also known as Waardenburg-Shah syndrome, has the additional feature of Hirschsprung disease (reviews by Read and Newton, 1997 and Pingault et al., 2010). [from OMIM]

MedGen UID:
86948
Concept ID:
C0079661
Disease or Syndrome
14.

Deficiency of steroid 11-beta-monooxygenase

Congenital adrenal hyperplasia due to 11-beta-hydroxylase deficiency is an autosomal recessive disorder of corticosteroid biosynthesis resulting in androgen excess, virilization, and hypertension. The defect causes decreased synthesis of cortisol and corticosterone in the zona fasciculata of the adrenal gland, resulting in accumulation of the precursors 11-deoxycortisol and 11-deoxycorticosterone; the latter is a potent salt-retaining mineralocorticoid that leads to arterial hypertension (White et al., 1991). CAH due to 11-beta-hydroxylase deficiency accounts for approximately 5 to 8% of all CAH cases; approximately 90% of cases are caused by 21-hydroxylase deficiency (201910) (White et al., 1991). [from OMIM]

MedGen UID:
82783
Concept ID:
C0268292
Disease or Syndrome
15.

Ectrodactyly, ectodermal dysplasia, and cleft lip-palate syndrome 3

The TP63-related disorders comprise six overlapping phenotypes: Ankyloblepharon-ectodermal defects-cleft lip/palate (AEC) syndrome (which includes Rapp-Hodgkin syndrome). Acro-dermo-ungual-lacrimal-tooth (ADULT) syndrome. Ectrodactyly, ectodermal dysplasia, cleft lip/palate syndrome 3 (EEC3). Limb-mammary syndrome. Split-hand/foot malformation type 4 (SHFM4). Isolated cleft lip/cleft palate (orofacial cleft 8). Individuals typically have varying combinations of ectodermal dysplasia (hypohidrosis, nail dysplasia, sparse hair, tooth abnormalities), cleft lip/palate, split-hand/foot malformation/syndactyly, lacrimal duct obstruction, hypopigmentation, hypoplastic breasts and/or nipples, and hypospadias. Findings associated with a single phenotype include ankyloblepharon filiforme adnatum (tissue strands that completely or partially fuse the upper and lower eyelids), skin erosions especially on the scalp associated with areas of scarring, and alopecia, trismus, and excessive freckling. [from GeneReviews]

MedGen UID:
347666
Concept ID:
C1858562
Disease or Syndrome
16.

Hyperinsulinemic hypoglycemia, familial, 4

Congenital hyperinsulinism is a condition that causes individuals to have abnormally high levels of insulin. Insulin is a hormone that helps control levels of blood glucose, also called blood sugar. People with this condition have frequent episodes of low blood glucose (hypoglycemia). In infants and young children, these episodes are characterized by a lack of energy (lethargy), irritability, or difficulty feeding. Repeated episodes of low blood glucose increase the risk for serious complications such as breathing difficulties, seizures, intellectual disability, vision loss, brain damage, and coma.

The severity of congenital hyperinsulinism varies widely among affected individuals, even among members of the same family. About 60 percent of infants with this condition experience a hypoglycemic episode within the first month of life. Other affected children develop hypoglycemia by early childhood. Unlike typical episodes of hypoglycemia, which occur most often after periods without food (fasting) or after exercising, episodes of hypoglycemia in people with congenital hyperinsulinism can also occur after eating. [from MedlinePlus Genetics]

MedGen UID:
400646
Concept ID:
C1864948
Disease or Syndrome
17.

Fanconi anemia complementation group D2

Fanconi anemia (FA) is characterized by physical abnormalities, bone marrow failure, and increased risk for malignancy. Physical abnormalities, present in approximately 75% of affected individuals, include one or more of the following: short stature, abnormal skin pigmentation, skeletal malformations of the upper and/or lower limbs, microcephaly, and ophthalmic and genitourinary tract anomalies. Progressive bone marrow failure with pancytopenia typically presents in the first decade, often initially with thrombocytopenia or leukopenia. The incidence of acute myeloid leukemia is 13% by age 50 years. Solid tumors – particularly of the head and neck, skin, and genitourinary tract – are more common in individuals with FA. [from GeneReviews]

MedGen UID:
463627
Concept ID:
C3160738
Disease or Syndrome
18.

Medulloblastoma

Medulloblastoma is the most common brain tumor in children. It accounts for 16% of all pediatric brain tumors, and 40% of all cerebellar tumors in childhood are medulloblastoma. Medulloblastoma occurs bimodally, with peak incidences between 3 and 4 years and 8 and 9 years of age. Approximately 10 to 15% of medulloblastomas are diagnosed in infancy. Medulloblastoma accounts for less than 1% of central nervous system (CNS) tumors in adults, with highest incidence in adults 20 to 34 years of age. In 1 to 2% of patients, medulloblastoma is associated with Gorlin syndrome (109400), a nevoid basal carcinoma syndrome. Medulloblastoma also occurs in up to 40% of patients with Turcot syndrome (see 276300). Medulloblastoma is thought to arise from neural stem cell precursors in the granular cell layer of the cerebellum. Standard treatment includes surgery, chemotherapy, and, depending on the age of the patient, radiation therapy (Crawford et al., 2007). Millard and De Braganca (2016) reviewed the histopathologic variants and molecular subgroups of medulloblastoma. Pretreatment prognosis of medulloblastoma has been refined by histopathologic subclassification into the following variants: large-cell medulloblastoma, anaplastic medulloblastoma, desmoplastic/nodular medulloblastoma, and medulloblastoma with extensive nodularity (MBEN). The latter 2 groups have been shown to have a significantly superior prognosis as compared to the large cell and anaplastic groups in young children. At the molecular level, medulloblastomas have been categorized into the following subgroups: wingless (WNT), sonic hedgehog (SHH), group 3, and group 4. Each subgroup is characterized by a unique set of genetics and gene expression as well as demographic and clinical features. [from OMIM]

MedGen UID:
7517
Concept ID:
C0025149
Neoplastic Process
19.

Autosomal recessive severe congenital neutropenia due to G6PC3 deficiency

G6PC3 deficiency is characterized by severe congenital neutropenia which occurs in a phenotypic continuum that includes the following: Isolated severe congenital neutropenia (nonsyndromic). Classic G6PC3 deficiency (severe congenital neutropenia plus cardiovascular and/or urogenital abnormalities). Severe G6PC3 deficiency (classic G6PC3 deficiency plus involvement of non-myeloid hematopoietic cell lines, additional extra-hematologic features, and pulmonary hypertension; known as Dursun syndrome). Neutropenia usually presents with recurrent bacterial infections in the first few months of life. Intrauterine growth restriction (IUGR), failure to thrive (FTT), and poor postnatal growth are common. Other findings in classic and severe G6PC3 deficiency can include inflammatory bowel disease (IBD) resembling Crohn's disease, and endocrine disorders (growth hormone deficiency, hypogonadotropic hypogonadism, and delayed puberty). [from GeneReviews]

MedGen UID:
414066
Concept ID:
C2751630
Disease or Syndrome
20.

Oculocutaneous albinism type 3

Researchers have identified multiple types of oculocutaneous albinism, which are distinguished by their specific skin, hair, and eye color changes and by their genetic cause. Oculocutaneous albinism type 1 is characterized by white hair, very pale skin, and light-colored irises. Type 2 is typically less severe than type 1; the skin is usually a creamy white color and hair may be light yellow, blond, or light brown. Type 3 includes a form of albinism called rufous oculocutaneous albinism, which usually affects dark-skinned people. Affected individuals have reddish-brown skin, ginger or red hair, and hazel or brown irises. Type 3 is often associated with milder vision abnormalities than the other forms of oculocutaneous albinism. Type 4 has signs and symptoms similar to those seen with type 2.

Oculocutaneous albinism is a group of conditions that affect coloring (pigmentation) of the skin, hair, and eyes. Affected individuals typically have very fair skin and white or light-colored hair. Long-term sun exposure greatly increases the risk of skin damage and skin cancers, including an aggressive form of skin cancer called melanoma, in people with this condition. Oculocutaneous albinism also reduces pigmentation of the colored part of the eye (the iris) and the light-sensitive tissue at the back of the eye (the retina). People with this condition usually have vision problems such as reduced sharpness; rapid, involuntary eye movements (nystagmus); and increased sensitivity to light (photophobia).

Several additional types of this disorder have been proposed, each affecting one or a few families. [from MedlinePlus Genetics]

MedGen UID:
87450
Concept ID:
C0342683
Disease or Syndrome
Format
Items per page

Send to:

Choose Destination

Supplemental Content

Find related data

Search details

See more...

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...