U.S. flag

An official website of the United States government

Format

Send to:

Choose Destination

Search results

Items: 5

  • The following terms were not found in MedGen: cyanopyridine, 3-Amino-4-cyanopyridine.
1.

Maple syrup urine disease type 1B

The major clinical features of maple syrup urine disease (MSUD) are mental and physical retardation, feeding problems, and a maple syrup odor to the urine. The keto acids of the branched-chain amino acids (BCAA) are present in the urine, resulting from a block in oxidative decarboxylation. There are 4 clinical subtypes of MSUD1B: the classic neonatal severe form, an intermediate form, an intermittent form, and a thiamine-responsive form (Chuang and Shih, 2001). The classic form is manifested within the first 2 weeks of life with poor feeding, lethargy, seizures, coma, and death if untreated. Intermediate MSUD is associated with elevated BCAAs and BCKA, with progressive mental retardation and developmental delay without a history of catastrophic illness. The diagnosis is usually delayed for many months. An intermittent form of MSUD may have normal levels of BCAAs, normal intelligence and development until a stress, e.g., infection, precipitates decompensation with ketoacidosis and neurologic symptoms, which are usually reversed with dietary treatment. Thiamine-responsive MSUD is similar to the intermediate phenotype but responds to pharmacologic doses of thiamine with normalization of BCAAs (Chuang et al., 1995). For general phenotypic information and a discussion of genetic heterogeneity of MSUD, see MSUD1A (248600). [from OMIM]

MedGen UID:
443951
Concept ID:
C2930990
Disease or Syndrome
2.

BLOOD GROUP, MN

MN antigens reside on GYPA, one of the most abundant red-cell glycoproteins. The M and N antigens are 2 autosomal codominant antigens encoded by the first 5 amino acids of GYPA and include 3 O-linked glycans as part of the epitope. M and N differ at amino acids 1 and 5, where M is ser-ser-thr-thr-gly, and N is leu-ser-thr-thr-glu. M is the ancestral GYPA allele and is common in all human populations and Old World apes. GYPA, glycophorin B (GYPB; 617923), and glycophorin E (GYPE; 138590) are closely linked on chromosome 4q31. The N terminus of GYPB is essentially identical to that of GYPA except that it always expresses the N antigen, denoted 'N' or N-prime. Antigens of the Ss blood group (111740) reside on GYPB, and recombination and gene conversion between GYPA, GYPB, and GYPE lead to hybrid glycophorin molecules and generation of low-incidence antigens. Thus, the MN and Ss blood groups are together referred to as the MNSs or MNS blood group system. The U antigen refers to a short extracellular sequence in GYPB located near the membrane. Recombination results in 3 glycophorin-null phenotypes: En(a-) cells lack GYPA due to recombination between GYPA and GYPB; GYPB-negative (S-s-U-) cells lack GYPB due to recombination in GYPB; and M(k) cells (M-N-S-s-U-) lack both GYPA and GYPB due to recombination between GYPA and GYPE. Individuals with glycophorin-null phenotypes have decreased sialic acid content and increased resistance to malarial infection (see 611162). GYPA and GYPB are not essential for red-cell development or survival, and GYPA- and GYPB-null phenotypes are not associated with anemia or altered red-cell function (review by Cooling, 2015). [from OMIM]

MedGen UID:
10071
Concept ID:
C0026327
Body System
3.

Sofosbuvir response

Sofosbuvir is an antiviral agent used in the treatment of chronic hepatitis C virus (HCV) infection. Sofosbuvir is FDA-approved to treat patients infected with HCV genotypes 1, 2, 3, and 4, as part of a combination antiviral treatment regimen. HCV genotype 1 is the most prevalent worldwide and HCV genotype 3 is the next most prevalent. Sofosbuvir may also be used as part of the treatment regimen of HCV genotypes 5 or 6. About 180 million people worldwide are infected with chronic hepatitis C, which is a major cause of chronic liver disease, cirrhosis, and liver cancer. Viral eradication is suboptimal with peginterferon plus ribavirin-based therapy, with only about half of patients with HCV genotype 1 infection achieving a sustained virological response (SVR) after 24 weeks. A SVR is defined as undetectable HCV RNA by the end of treatment or at a specific number of weeks after the initiation of treatment, e.g., undetectable HCV RNA at 12 weeks is annotated (SVR12). Direct-acting antivirals (DAAs), such as sofosbuvir, were developed to improve viral eradication rates. They target HCV-encoded proteins involved in viral replication and infection. Sofosbuvir, the first and thus far only DAA, targets NS5B polymerase, the viral enzyme required for HCV RNA replication. Sofosbuvir may be used in combination with peginterferon. The genetic variant rs12979860, located in the INFL4 gene, is a strong predictor of response to peginterferon-based therapies. The variant is a C to T change—individuals with the favorable "C/C" genotype have about a 2-fold higher likelihood of achieving SVR compared to individuals with CT or TT genotypes. (Note, because the association of rs12979860 with treatment response was reported several years before the discovery of IFNL4, the variant is commonly, but mistakenly, referred to as IL28B, which is the previous name for the IFNL3 gene.) For specific treatment regimens that include sofosbuvir, although the IFNL4 variant still influences treatment outcomes, the SVR remains relatively high for all IFNL4 genotypes. For example in the NEUTRINO study, which is referred to in the FDA-approved drug label for sofosbuvir, the SVR12 rate was 99% in individuals with baseline C/C alleles and 87% in individuals with baseline non-C/C alleles. The individuals in this study had HCV genotype 1 or 4 infection, and were receiving sofosbuvir plus peginterferon plus ribavirin therapy. The drug label for sofosbuvir also discusses viral resistance. In cell culture, the amino acid substitution S282T in the viral NS5B polymerase is associated with reduced susceptibility to sofosbuvir. During the ELECTRON trial, this substitution was transiently detected in one individual who relapsed during sofosbuvir monotherapy. However, the clinical significance of such substitutions remains unknown. [from Medical Genetics Summaries]

MedGen UID:
893186
Concept ID:
CN238522
Sign or Symptom
4.

Adenylosuccinate lyase deficiency

Adenylosuccinase deficiency is an autosomal recessive inborn error of metabolism caused by an enzymatic defect in de novo purine synthesis (DNPS) pathway. ADSL deficiency leads to the accumulation of toxic intermediates, including succinyladenosine (S-Ado) and succinylaminoimidazole carboxamide riboside (SAICAr) in body fluids. There are 3 major phenotypic forms of the disorder that correlate with different values of the S-Ado and SAICAr concentration ratios (S-Ado/SAICAr) in the cerebrospinal fluid. These include the most severe fatal neonatal encephalopathy (S-Ado/SAICAr ratio less than 1); childhood form (type I) with severe psychomotor retardation (S-Ado/SAICAr ratio close to 1), and a milder form (type II) with psychomotor retardation or hypotonia (S-Ado/SAICAr ratio greater than 2) (summary by Baresova et al., 2012). [from OMIM]

MedGen UID:
78641
Concept ID:
C0268126
Disease or Syndrome
5.

BLOOD GROUP, Ss

Ss blood group antigens reside on the red-cell glycoprotein GYPB. The S and s antigens result from a polymorphism at amino acid 29 of GYPB, where S has met29 and s has thr29. The U antigen refers to a short extracellular sequence in GYPB located near the membrane. GYPB, glycophorin A (GYPA; 617922), and glycophorin E (GYPE; 138590) are closely linked on chromosome 4q31. Antigens of the MN blood group (111300) reside on GYPA. The M and N antigens differ at amino acids 1 and 5 of GYPA, where M is ser-ser-thr-thr-gly, and N is leu-ser-thr-thr-glu. The N terminus of GYPB is essentially identical to that of GYPA except that it always expresses the N antigen, denoted 'N' or N-prime. Recombination and gene conversion between GYPA, GYPB, and GYPE lead to hybrid glycophorin molecules and generation of low-incidence antigens. Thus, the MN and Ss blood groups are together referred to as the MNSs blood group system (see 111300). Recombination results in 3 glycophorin-null phenotypes: En(a-) cells lack GYPA due to recombination between GYPA and GYPB; GYPB-negative (S-s-U-) cells lack GYPB due to recombination in GYPB; and M(k) cells (M-N-S-s-U-) lack both GYPA and GYPB due to recombination between GYPA and GYPE. Individuals with glycophorin-null phenotypes have decreased sialic acid content and increased resistance to malarial infection (see 611162). GYPA and GYPB are not essential for red-cell development or survival, and GYPA- and GYPB-null phenotypes are not associated with anemia or altered red-cell function (review by Cooling, 2015). [from OMIM]

MedGen UID:
1646767
Concept ID:
C4551874
Body System
Format

Send to:

Choose Destination

Supplemental Content

Find related data

Search details

See more...

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...