U.S. flag

An official website of the United States government

Format
Items per page

Send to:

Choose Destination

Search results

Items: 1 to 20 of 131

  • The following term was not found in MedGen: 6Chi.
1.

Coma

The complete absence of wakefulness and consciousness, which is evident through a lack of response to any form of external stimuli. [from HPO]

MedGen UID:
1054
Concept ID:
C0009421
Disease or Syndrome
2.

Oculomotor apraxia - Cogan type

Congenital oculomotor apraxia, first reported by Cogan (1952), is characterized by (1) defective or absent horizontal voluntary eye movements, and (2) defective or absent horizontal ocular attraction movements. Oculomotor apraxia occurs in ataxia-telangiectasia (208900). Also see ataxia-oculomotor apraxia syndrome (208920; 606002). Oculomotor apraxia has been observed in the neuronopathic form of Gaucher disease (type III; 231000) (Erikson and Wahlberg, 1985; Gross-Tsur et al., 1989). [from OMIM]

MedGen UID:
154254
Concept ID:
C0543874
Disease or Syndrome
3.

Ornithine carbamoyltransferase deficiency

Ornithine transcarbamylase (OTC) deficiency can occur as a severe neonatal-onset disease in males (but rarely in females) and as a post-neonatal-onset (also known as "late-onset" or partial deficiency) disease in males and females. Males with severe neonatal-onset OTC deficiency are asymptomatic at birth but become symptomatic from hyperammonemia in the first week of life, most often on day two to three of life, and are usually catastrophically ill by the time they come to medical attention. After successful treatment of neonatal hyperammonemic coma these infants can easily become hyperammonemic again despite appropriate treatment; they typically require liver transplant to improve quality of life. Males and heterozygous females with post-neonatal-onset (partial) OTC deficiency can present from infancy to later childhood, adolescence, or adulthood. No matter how mild the disease, a hyperammonemic crisis can be precipitated by stressors and become a life-threatening event at any age and in any situation in life. For all individuals with OTC deficiency, typical neuropsychological complications include developmental delay, learning disabilities, intellectual disability, attention-deficit/hyperactivity disorder, and executive function deficits. [from GeneReviews]

MedGen UID:
75692
Concept ID:
C0268542
Disease or Syndrome
4.

Argininosuccinate lyase deficiency

Deficiency of argininosuccinate lyase (ASL), the enzyme that cleaves argininosuccinic acid to produce arginine and fumarate in the fourth step of the urea cycle, may present as a severe neonatal-onset form or a late-onset form: The severe neonatal-onset form is characterized by hyperammonemia within the first few days after birth that can manifest as increasing lethargy, somnolence, refusal to feed, vomiting, tachypnea, and respiratory alkalosis. Absence of treatment leads to worsening lethargy, seizures, coma, and even death. In contrast, the manifestations of late-onset form range from episodic hyperammonemia triggered by acute infection or stress to cognitive impairment, behavioral abnormalities, and/or learning disabilities in the absence of any documented episodes of hyperammonemia. Manifestations of ASL deficiency that appear to be unrelated to the severity or duration of hyperammonemic episodes: Neurocognitive deficiencies (attention-deficit/hyperactivity disorder, developmental delay, seizures, and learning disability). Liver disease (hepatitis, cirrhosis). Trichorrhexis nodosa (coarse brittle hair that breaks easily). Systemic hypertension. [from GeneReviews]

MedGen UID:
78687
Concept ID:
C0268547
Disease or Syndrome
5.

Propionic acidemia

The spectrum of propionic acidemia (PA) ranges from neonatal-onset to late-onset disease. Neonatal-onset PA, the most common form, is characterized by a healthy newborn with poor feeding and decreased arousal in the first few days of life, followed by progressive encephalopathy of unexplained origin. Without prompt diagnosis and management, this is followed by progressive encephalopathy manifesting as lethargy, seizures, or coma that can result in death. It is frequently accompanied by metabolic acidosis with anion gap, lactic acidosis, ketonuria, hypoglycemia, hyperammonemia, and cytopenias. Individuals with late-onset PA may remain asymptomatic and suffer a metabolic crisis under catabolic stress (e.g., illness, surgery, fasting) or may experience a more insidious onset with the development of multiorgan complications including vomiting, protein intolerance, failure to thrive, hypotonia, developmental delays or regression, movement disorders, or cardiomyopathy. Isolated cardiomyopathy can be observed on rare occasion in the absence of clinical metabolic decompensation or neurocognitive deficits. Manifestations of neonatal and late-onset PA over time can include growth impairment, intellectual disability, seizures, basal ganglia lesions, pancreatitis, and cardiomyopathy. Other rarely reported complications include optic atrophy, hearing loss, premature ovarian insufficiency, and chronic renal failure. [from GeneReviews]

MedGen UID:
75694
Concept ID:
C0268579
Disease or Syndrome
6.

Medium-chain acyl-coenzyme A dehydrogenase deficiency

Medium-chain acyl-coenzyme A dehydrogenase (MCAD) is one of the enzymes involved in mitochondrial fatty acid ß-oxidation. Fatty acid ß-oxidation fuels hepatic ketogenesis, which provides a major source of energy once hepatic glycogen stores become depleted during prolonged fasting and periods of higher energy demands. MCAD deficiency is the most common disorder of fatty acid ß-oxidation and one of the most common inborn errors of metabolism. Most children are now diagnosed through newborn screening. Clinical symptoms in a previously apparently healthy child with MCAD deficiency include hypoketotic hypoglycemia and vomiting that may progress to lethargy, seizures, and coma triggered by a common illness. Hepatomegaly and liver disease are often present during an acute episode. Children appear normal at birth and – if not identified through newborn screening – typically present between age three and 24 months, although presentation even as late as adulthood is possible. The prognosis is excellent once the diagnosis is established and frequent feedings are instituted to avoid any prolonged periods of fasting. [from GeneReviews]

MedGen UID:
65086
Concept ID:
C0220710
Disease or Syndrome
7.

Deficiency of hydroxymethylglutaryl-CoA lyase

3-Hydroxy-3-methylglutaryl-CoA lyase deficiency (HMGCLD) is a rare autosomal recessive disorder with the cardinal manifestations of metabolic acidosis without ketonuria, hypoglycemia, and a characteristic pattern of elevated urinary organic acid metabolites, including 3-hydroxy-3-methylglutaric, 3-methylglutaric, and 3-hydroxyisovaleric acids. Urinary levels of 3-methylcrotonylglycine may be increased. Dicarboxylic aciduria, hepatomegaly, and hyperammonemia may also be observed. Presenting clinical signs include irritability, lethargy, coma, and vomiting (summary by Gibson et al., 1988). [from OMIM]

MedGen UID:
78692
Concept ID:
C0268601
Disease or Syndrome
8.

Hereditary fructosuria

Following dietary exposure to fructose, sucrose, or sorbitol, untreated hereditary fructose intolerance (HFI) is characterized by metabolic disturbances (hypoglycemia, lactic acidemia, hypophosphatemia, hyperuricemia, hypermagnesemia, hyperalaninemia) and clinical findings (nausea, vomiting, and abdominal distress; chronic growth restriction / failure to thrive). While untreated HFI typically first manifested when fructose- and sucrose-containing foods were introduced in the course of weaning young infants from breast milk, it is now presenting earlier, due to the addition of fructose-containing nutrients in infant formulas. If the infant ingests large quantities of fructose, the infant may acutely develop lethargy, seizures, and/or progressive coma. Untreated HFI may result in renal and hepatic failure. If identified and treated before permanent organ injury occurs, individuals with HFI can experience a normal quality of life and life expectancy. [from GeneReviews]

MedGen UID:
42105
Concept ID:
C0016751
Disease or Syndrome
9.

Maple syrup urine disease

Maple syrup urine disease (MSUD) is categorized as classic (severe), intermediate, or intermittent. Neonates with classic MSUD are born asymptomatic but without treatment follow a predictable course: 12–24 hours. Elevated concentrations of branched-chain amino acids (BCAAs; leucine, isoleucine, and valine) and alloisoleucine, as well as a generalized disturbance of amino acid concentration ratios, are present in blood and the maple syrup odor can be detected in cerumen; Two to three days. Early and nonspecific signs of metabolic intoxication (i.e., irritability, hypersomnolence, anorexia) are accompanied by the presence of branched-chain alpha-ketoacids, acetoacetate, and beta-hydroxybutyrate in urine; Four to six days. Worsening encephalopathy manifests as lethargy, apnea, opisthotonos, and reflexive "fencing" or "bicycling" movements as the sweet maple syrup odor becomes apparent in urine; Seven to ten days. Severe intoxication culminates in critical cerebral edema, coma, and central respiratory failure. Individuals with intermediate MSUD have partial branched-chain alpha-ketoacid dehydrogenase deficiency that manifests only intermittently or responds to dietary thiamine therapy; these individuals can experience severe metabolic intoxication and encephalopathy in the face of sufficient catabolic stress. In the era of newborn screening (NBS), the prompt initiation of treatment of asymptomatic infants detected by NBS means that most individuals who would have developed neonatal manifestations of MSUD remain asymptomatic with continued treatment compliance. [from GeneReviews]

MedGen UID:
6217
Concept ID:
C0024776
Disease or Syndrome
10.

Methylmalonic aciduria due to methylmalonyl-CoA mutase deficiency

For this GeneReview, the term "isolated methylmalonic acidemia" refers to a group of inborn errors of metabolism associated with elevated methylmalonic acid (MMA) concentration in the blood and urine that result from the failure to isomerize (convert) methylmalonyl-coenzyme A (CoA) into succinyl-CoA during propionyl-CoA metabolism in the mitochondrial matrix, without hyperhomocysteinemia or homocystinuria, hypomethioninemia, or variations in other metabolites, such as malonic acid. Isolated MMA is caused by complete or partial deficiency of the enzyme methylmalonyl-CoA mutase (mut0 enzymatic subtype or mut– enzymatic subtype, respectively), a defect in the transport or synthesis of its cofactor, 5-deoxy-adenosyl-cobalamin (cblA, cblB, or cblD-MMA), or deficiency of the enzyme methylmalonyl-CoA epimerase. Prior to the advent of newborn screening, common phenotypes included: Infantile/non-B12-responsive form (mut0 enzymatic subtype, cblB), the most common phenotype, associated with infantile-onset lethargy, tachypnea, hypothermia, vomiting, and dehydration on initiation of protein-containing feeds. Without appropriate treatment, the infantile/non-B12-responsive phenotype could rapidly progress to coma due to hyperammonemic encephalopathy. Partially deficient or B12-responsive phenotypes (mut– enzymatic subtype, cblA, cblB [rare], cblD-MMA), in which symptoms occur in the first few months or years of life and are characterized by feeding problems, failure to thrive, hypotonia, and developmental delay marked by episodes of metabolic decompensation. Methylmalonyl-CoA epimerase deficiency, in which findings range from complete absence of symptoms to severe metabolic acidosis. Affected individuals can also develop ataxia, dysarthria, hypotonia, mild spastic paraparesis, and seizures. In those individuals diagnosed by newborn screening and treated from an early age, there appears to be decreased early mortality, less severe symptoms at diagnosis, favorable short-term neurodevelopmental outcome, and lower incidence of movement disorders and irreversible cerebral damage. However, secondary complications may still occur and can include intellectual disability, tubulointerstitial nephritis with progressive impairment of renal function, "metabolic stroke" (bilateral lacunar infarction of the basal ganglia during acute metabolic decompensation), pancreatitis, growth failure, functional immune impairment, bone marrow failure, optic nerve atrophy, arrhythmias and/or cardiomyopathy (dilated or hypertrophic), liver steatosis/fibrosis/cancer, and renal cancer. [from GeneReviews]

MedGen UID:
344424
Concept ID:
C1855114
Disease or Syndrome
11.

Neonatal intrahepatic cholestasis due to citrin deficiency

Citrin deficiency can manifest in newborns or infants as neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD), in older children as failure to thrive and dyslipidemia caused by citrin deficiency (FTTDCD), and in adults as recurrent hyperammonemia with neuropsychiatric symptoms in citrullinemia type II (CTLN2). Often citrin deficiency is characterized by strong preference for protein-rich and/or lipid-rich foods and aversion to carbohydrate-rich foods. NICCD. Children younger than age one year have a history of low birth weight with growth restriction and transient intrahepatic cholestasis, hepatomegaly, diffuse fatty liver, and parenchymal cellular infiltration associated with hepatic fibrosis, variable liver dysfunction, hypoproteinemia, decreased coagulation factors, hemolytic anemia, and/or hypoglycemia. NICCD is generally not severe and symptoms often resolve by age one year with appropriate treatment, although liver transplantation has been required in rare instances. FTTDCD. Beyond age one year, many children with citrin deficiency develop a protein-rich and/or lipid-rich food preference and aversion to carbohydrate-rich foods. Clinical abnormalities may include growth restriction, hypoglycemia, pancreatitis, severe fatigue, anorexia, and impaired quality of life. Laboratory changes are dyslipidemia, increased lactate-to-pyruvate ratio, higher levels of urinary oxidative stress markers, and considerable deviation in tricarboxylic acid (TCA) cycle metabolites. One or more decades later, some individuals with NICCD or FTTDCD develop CTLN2. CTLN2. Presentation is sudden and usually between ages 20 and 50 years. Manifestations are recurrent hyperammonemia with neuropsychiatric symptoms including nocturnal delirium, aggression, irritability, hyperactivity, delusions, disorientation, restlessness, drowsiness, loss of memory, flapping tremor, convulsive seizures, and coma. Symptoms are often provoked by alcohol and sugar intake, medication, and/or surgery. Affected individuals may or may not have a prior history of NICCD or FTTDCD. [from GeneReviews]

MedGen UID:
340091
Concept ID:
C1853942
Disease or Syndrome
12.

Methylmalonic aciduria, cblA type

For this GeneReview, the term "isolated methylmalonic acidemia" refers to a group of inborn errors of metabolism associated with elevated methylmalonic acid (MMA) concentration in the blood and urine that result from the failure to isomerize (convert) methylmalonyl-coenzyme A (CoA) into succinyl-CoA during propionyl-CoA metabolism in the mitochondrial matrix, without hyperhomocysteinemia or homocystinuria, hypomethioninemia, or variations in other metabolites, such as malonic acid. Isolated MMA is caused by complete or partial deficiency of the enzyme methylmalonyl-CoA mutase (mut0 enzymatic subtype or mut– enzymatic subtype, respectively), a defect in the transport or synthesis of its cofactor, 5-deoxy-adenosyl-cobalamin (cblA, cblB, or cblD-MMA), or deficiency of the enzyme methylmalonyl-CoA epimerase. Prior to the advent of newborn screening, common phenotypes included: Infantile/non-B12-responsive form (mut0 enzymatic subtype, cblB), the most common phenotype, associated with infantile-onset lethargy, tachypnea, hypothermia, vomiting, and dehydration on initiation of protein-containing feeds. Without appropriate treatment, the infantile/non-B12-responsive phenotype could rapidly progress to coma due to hyperammonemic encephalopathy. Partially deficient or B12-responsive phenotypes (mut– enzymatic subtype, cblA, cblB [rare], cblD-MMA), in which symptoms occur in the first few months or years of life and are characterized by feeding problems, failure to thrive, hypotonia, and developmental delay marked by episodes of metabolic decompensation. Methylmalonyl-CoA epimerase deficiency, in which findings range from complete absence of symptoms to severe metabolic acidosis. Affected individuals can also develop ataxia, dysarthria, hypotonia, mild spastic paraparesis, and seizures. In those individuals diagnosed by newborn screening and treated from an early age, there appears to be decreased early mortality, less severe symptoms at diagnosis, favorable short-term neurodevelopmental outcome, and lower incidence of movement disorders and irreversible cerebral damage. However, secondary complications may still occur and can include intellectual disability, tubulointerstitial nephritis with progressive impairment of renal function, "metabolic stroke" (bilateral lacunar infarction of the basal ganglia during acute metabolic decompensation), pancreatitis, growth failure, functional immune impairment, bone marrow failure, optic nerve atrophy, arrhythmias and/or cardiomyopathy (dilated or hypertrophic), liver steatosis/fibrosis/cancer, and renal cancer. [from GeneReviews]

MedGen UID:
344422
Concept ID:
C1855109
Disease or Syndrome
13.

Encephalopathy, acute, infection-induced, susceptibility to, 4

Acute encephalopathy is a severe neurologic complication of an infection that usually occurs in children. It is characterized by a high-grade fever accompanied within 12 to 48 hours by febrile convulsions, often leading to coma, multiple-organ failure, brain edema, and high morbidity and mortality. The infections are usually viral, particularly influenza, although other viruses and even mycoplasma have been found to cause the disorder (summary by Chen et al., 2005; Shinohara et al., 2011). For a discussion of genetic heterogeneity of susceptibility to acute infection-induced encephalopathy, see 610551. [from OMIM]

MedGen UID:
481790
Concept ID:
C3280160
Finding
14.

Methylmalonic aciduria, cblB type

For this GeneReview, the term "isolated methylmalonic acidemia" refers to a group of inborn errors of metabolism associated with elevated methylmalonic acid (MMA) concentration in the blood and urine that result from the failure to isomerize (convert) methylmalonyl-coenzyme A (CoA) into succinyl-CoA during propionyl-CoA metabolism in the mitochondrial matrix, without hyperhomocysteinemia or homocystinuria, hypomethioninemia, or variations in other metabolites, such as malonic acid. Isolated MMA is caused by complete or partial deficiency of the enzyme methylmalonyl-CoA mutase (mut0 enzymatic subtype or mut– enzymatic subtype, respectively), a defect in the transport or synthesis of its cofactor, 5-deoxy-adenosyl-cobalamin (cblA, cblB, or cblD-MMA), or deficiency of the enzyme methylmalonyl-CoA epimerase. Prior to the advent of newborn screening, common phenotypes included: Infantile/non-B12-responsive form (mut0 enzymatic subtype, cblB), the most common phenotype, associated with infantile-onset lethargy, tachypnea, hypothermia, vomiting, and dehydration on initiation of protein-containing feeds. Without appropriate treatment, the infantile/non-B12-responsive phenotype could rapidly progress to coma due to hyperammonemic encephalopathy. Partially deficient or B12-responsive phenotypes (mut– enzymatic subtype, cblA, cblB [rare], cblD-MMA), in which symptoms occur in the first few months or years of life and are characterized by feeding problems, failure to thrive, hypotonia, and developmental delay marked by episodes of metabolic decompensation. Methylmalonyl-CoA epimerase deficiency, in which findings range from complete absence of symptoms to severe metabolic acidosis. Affected individuals can also develop ataxia, dysarthria, hypotonia, mild spastic paraparesis, and seizures. In those individuals diagnosed by newborn screening and treated from an early age, there appears to be decreased early mortality, less severe symptoms at diagnosis, favorable short-term neurodevelopmental outcome, and lower incidence of movement disorders and irreversible cerebral damage. However, secondary complications may still occur and can include intellectual disability, tubulointerstitial nephritis with progressive impairment of renal function, "metabolic stroke" (bilateral lacunar infarction of the basal ganglia during acute metabolic decompensation), pancreatitis, growth failure, functional immune impairment, bone marrow failure, optic nerve atrophy, arrhythmias and/or cardiomyopathy (dilated or hypertrophic), liver steatosis/fibrosis/cancer, and renal cancer. [from GeneReviews]

MedGen UID:
344420
Concept ID:
C1855102
Disease or Syndrome
15.

Citrullinemia type II

Citrin deficiency can manifest in newborns or infants as neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD), in older children as failure to thrive and dyslipidemia caused by citrin deficiency (FTTDCD), and in adults as recurrent hyperammonemia with neuropsychiatric symptoms in citrullinemia type II (CTLN2). Often citrin deficiency is characterized by strong preference for protein-rich and/or lipid-rich foods and aversion to carbohydrate-rich foods. NICCD. Children younger than age one year have a history of low birth weight with growth restriction and transient intrahepatic cholestasis, hepatomegaly, diffuse fatty liver, and parenchymal cellular infiltration associated with hepatic fibrosis, variable liver dysfunction, hypoproteinemia, decreased coagulation factors, hemolytic anemia, and/or hypoglycemia. NICCD is generally not severe and symptoms often resolve by age one year with appropriate treatment, although liver transplantation has been required in rare instances. FTTDCD. Beyond age one year, many children with citrin deficiency develop a protein-rich and/or lipid-rich food preference and aversion to carbohydrate-rich foods. Clinical abnormalities may include growth restriction, hypoglycemia, pancreatitis, severe fatigue, anorexia, and impaired quality of life. Laboratory changes are dyslipidemia, increased lactate-to-pyruvate ratio, higher levels of urinary oxidative stress markers, and considerable deviation in tricarboxylic acid (TCA) cycle metabolites. One or more decades later, some individuals with NICCD or FTTDCD develop CTLN2. CTLN2. Presentation is sudden and usually between ages 20 and 50 years. Manifestations are recurrent hyperammonemia with neuropsychiatric symptoms including nocturnal delirium, aggression, irritability, hyperactivity, delusions, disorientation, restlessness, drowsiness, loss of memory, flapping tremor, convulsive seizures, and coma. Symptoms are often provoked by alcohol and sugar intake, medication, and/or surgery. Affected individuals may or may not have a prior history of NICCD or FTTDCD. [from GeneReviews]

MedGen UID:
350276
Concept ID:
C1863844
Disease or Syndrome
16.

Acute deterioration with shock, coma, central apnea and ophthalmoparesis, after proctated vomiting

MedGen UID:
879978
Concept ID:
CN235369
Finding
17.

Lysinuric protein intolerance

Lysinuric protein intolerance (LPI) typically presents after an infant is weaned from breast milk or formula; variable findings include recurrent vomiting and episodes of diarrhea, episodes of stupor and coma after a protein-rich meal, poor feeding, aversion to protein-rich food, failure to thrive, hepatosplenomegaly, and muscular hypotonia. Over time, findings include: poor growth, osteoporosis, involvement of the lungs (progressive interstitial changes, pulmonary alveolar proteinosis) and of the kidneys (progressive glomerular and proximal tubular disease), hematologic abnormalities (normochromic or hypochromic anemia, leukopenia, thrombocytopenia, erythroblastophagocytosis in the bone marrow aspirate), and a clinical presentation resembling the hemophagocytic lymphohistiocytosis/macrophagic activation syndrome. Hypercholesterolemia, hypertriglyceridemia, and acute pancreatitis can also be seen. [from GeneReviews]

MedGen UID:
75704
Concept ID:
C0268647
Disease or Syndrome
18.

Coma with respiratory acidosis, in the sequence of rhinopharyngitis and vomiting

MedGen UID:
879977
Concept ID:
CN235368
Finding
19.

Tetralogy of Fallot

Each of the heart defects associated with CCHD affects the flow of blood into, out of, or through the heart. Some of the heart defects involve structures within the heart itself, such as the two lower chambers of the heart (the ventricles) or the valves that control blood flow through the heart. Others affect the structure of the large blood vessels leading into and out of the heart (including the aorta and pulmonary artery). Still others involve a combination of these structural abnormalities.

Some people with treated CCHD have few related health problems later in life. However, long-term effects of CCHD can include delayed development and reduced stamina during exercise. Adults with these heart defects have an increased risk of abnormal heart rhythms, heart failure, sudden cardiac arrest, stroke, and premature death.

People with CCHD have one or more specific heart defects. The heart defects classified as CCHD include coarctation of the aorta, double-outlet right ventricle, D-transposition of the great arteries, Ebstein anomaly, hypoplastic left heart syndrome, interrupted aortic arch, pulmonary atresia with intact septum, single ventricle, total anomalous pulmonary venous connection, tetralogy of Fallot, tricuspid atresia, and truncus arteriosus.

Although babies with CCHD may appear healthy for the first few hours or days of life, signs and symptoms soon become apparent. These can include an abnormal heart sound during a heartbeat (heart murmur), rapid breathing (tachypnea), low blood pressure (hypotension), low levels of oxygen in the blood (hypoxemia), and a blue or purple tint to the skin caused by a shortage of oxygen (cyanosis). If untreated, CCHD can lead to shock, coma, and death. However, most people with CCHD now survive past infancy due to improvements in early detection, diagnosis, and treatment.

Critical congenital heart disease (CCHD) is a term that refers to a group of serious heart defects that are present from birth. These abnormalities result from problems with the formation of one or more parts of the heart during the early stages of embryonic development. CCHD prevents the heart from pumping blood effectively or reduces the amount of oxygen in the blood. As a result, organs and tissues throughout the body do not receive enough oxygen, which can lead to organ damage and life-threatening complications. Individuals with CCHD usually require surgery soon after birth. [from MedlinePlus Genetics]

MedGen UID:
21498
Concept ID:
C0039685
Congenital Abnormality
20.

Alcohol dependence

Alcohol use disorder is a diagnosis made when an individual has severe problems related to drinking alcohol. Alcohol use disorder can cause major health, social, and economic problems, and can endanger affected individuals and others through behaviors prompted by impaired decision-making and lowered inhibitions, such as aggression, unprotected sex, or driving while intoxicated.

Alcohol use disorder is a broad diagnosis that encompasses several commonly used terms describing problems with drinking. It includes alcoholism, also called alcohol addiction, which is a long-lasting (chronic) condition characterized by a powerful, compulsive urge to drink alcohol and the inability to stop drinking after starting. In addition to alcoholism, alcohol use disorder includes alcohol abuse, which involves problem drinking without addiction.

Habitual excessive use of alcohol changes the chemistry of the brain and leads to tolerance, which means that over time the amount of alcohol ingested needs to be increased to achieve the same effect. Long-term excessive use of alcohol may also produce dependence, which means that when people stop drinking, they have physical and psychological symptoms of withdrawal, such as sleep problems, irritability, jumpiness, shakiness, restlessness, headache, nausea, sweating, anxiety, and depression. In severe cases, agitation, fever, seizures, and hallucinations can occur; this pattern of severe withdrawal symptoms is called delirium tremens.

The heavy drinking that often occurs in alcohol use disorder, and can also occur in short-term episodes called binge drinking, can lead to a life-threatening overdose known as alcohol poisoning. Alcohol poisoning occurs when a large quantity of alcohol consumed over a short time causes problems with breathing, heart rate, body temperature, and the gag reflex. Signs and symptoms can include vomiting, choking, confusion, slow or irregular breathing, pale or blue-tinged skin, seizures, a low body temperature, a toxic buildup of substances called ketones in the blood (alcoholic ketoacidosis), and passing out (unconsciousness). Coma, brain damage, and death can occur if alcohol poisoning is not treated immediately.

Chronic heavy alcohol use can also cause long-term problems affecting many organs and systems of the body. These health problems include irreversible liver disease (cirrhosis), inflammation of the pancreas (pancreatitis), brain dysfunction (encephalopathy), nerve damage (neuropathy), high blood pressure (hypertension), stroke, weakening of the heart muscle (cardiomyopathy), irregular heartbeats (arrhythmia), and immune system problems. Long-term overuse of alcohol also increases the risk of certain cancers, including cancers of the mouth, throat, esophagus, liver, and breast. Alcohol use in pregnant women can cause birth defects and fetal alcohol syndrome, which can lead to lifelong physical and behavioral problems in the affected child. [from MedlinePlus Genetics]

MedGen UID:
1801
Concept ID:
C0001973
Mental or Behavioral Dysfunction
Format
Items per page

Send to:

Choose Destination

Supplemental Content

Find related data

Search details

See more...

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...