Warning: The NCBI web site requires JavaScript to function. more...
An official website of the United States government
The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.
The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.
Trichothiodystrophy 1, photosensitive
About half of all people with trichothiodystrophy have a photosensitive form of the disorder, which causes them to be extremely sensitive to ultraviolet (UV) rays from sunlight. They develop a severe sunburn after spending just a few minutes in the sun. However, for reasons that are unclear, they do not develop other sun-related problems such as excessive freckling of the skin or an increased risk of skin cancer. Many people with trichothiodystrophy report that they do not sweat.Intellectual disability and delayed development are common in people with trichothiodystrophy, although most affected individuals are highly social with an outgoing and engaging personality. Some people with trichothiodystrophy have brain abnormalities that can be seen with imaging tests. A common neurological feature of this disorder is impaired myelin production (dysmyelination). Myelin is a fatty substance that insulates nerve cells and promotes the rapid transmission of nerve impulses.Mothers of children with trichothiodystrophy may experience problems during pregnancy including pregnancy-induced high blood pressure (preeclampsia) and a related condition called HELLP syndrome that can damage the liver. Babies with trichothiodystrophy are at increased risk of premature birth, low birth weight, and slow growth. Most children with trichothiodystrophy have short stature compared to others their age. The signs and symptoms of trichothiodystrophy vary widely. Mild cases may involve only the hair. More severe cases also cause delayed development, significant intellectual disability, and recurrent infections; severely affected individuals may survive only into infancy or early childhood.Trichothiodystrophy is also associated with recurrent infections, particularly respiratory infections, which can be life-threatening. People with trichothiodystrophy may have abnormal red blood cells, including red blood cells that are smaller than normal. They may also have elevated levels of a type of hemoglobin called A2, which is a protein found in red blood cells. Other features of trichothiodystrophy can include dry, scaly skin (ichthyosis); abnormalities of the fingernails and toenails; clouding of the lens in both eyes from birth (congenital cataracts); poor coordination; and skeletal abnormalities including degeneration of both hips at an early age.In people with trichothiodystrophy, tests show that the hair is lacking sulfur-containing proteins that normally gives hair its strength. A cross section of a cut hair shows alternating light and dark banding that has been described as a "tiger tail."Trichothiodystrophy, commonly called TTD, is a rare inherited condition that affects many parts of the body. The hallmark of this condition is hair that is sparse and easily broken. [from MedlinePlus Genetics]
Cockayne syndrome type 1
Cockayne syndrome (referred to as CS in this GeneReview) spans a continuous phenotypic spectrum that includes: CS type I, the "classic" or "moderate" form; CS type II, a more severe form with symptoms present at birth; this form overlaps with cerebrooculofacioskeletal (COFS) syndrome; CS type III, a milder and later-onset form; COFS syndrome, a fetal form of CS. CS type I is characterized by normal prenatal growth with the onset of growth and developmental abnormalities in the first two years. By the time the disease has become fully manifest, height, weight, and head circumference are far below the fifth percentile. Progressive impairment of vision, hearing, and central and peripheral nervous system function leads to severe disability; death typically occurs in the first or second decade. CS type II is characterized by growth failure at birth, with little or no postnatal neurologic development. Congenital cataracts or other structural anomalies of the eye may be present. Affected children have early postnatal contractures of the spine (kyphosis, scoliosis) and joints. Death usually occurs by age five years. CS type III is a phenotype in which major clinical features associated with CS only become apparent after age two years; growth and/or cognition exceeds the expectations for CS type I. COFS syndrome is characterized by very severe prenatal developmental anomalies (arthrogryposis and microphthalmia). [from GeneReviews]
Xeroderma pigmentosum, group D
Xeroderma pigmentosum (XP) is characterized by: Acute sun sensitivity (severe sunburn with blistering, persistent erythema on minimal sun exposure) with marked freckle-like pigmentation of the face before age two years; Sunlight-induced ocular involvement (photophobia, severe keratitis, atrophy of the skin of the lids, ocular surface neoplasms); Greatly increased risk of sunlight-induced cutaneous neoplasms (basal cell carcinoma, squamous cell carcinoma, melanoma) within the first decade of life. Approximately 25% of affected individuals have neurologic manifestations (acquired microcephaly, diminished or absent deep tendon stretch reflexes, progressive sensorineural hearing loss, progressive cognitive impairment, and ataxia). The most common causes of death are skin cancer, neurologic degeneration, and internal cancer. The median age at death in persons with XP with neurodegeneration (29 years) was found to be younger than that in persons with XP without neurodegeneration (37 years). [from GeneReviews]
Xeroderma pigmentosum, group F
Cockayne syndrome type 2
Xeroderma pigmentosum, group G
Xeroderma pigmentosum group B
Cerebrooculofacioskeletal syndrome 1
An autosomal recessive subtype of cerebrooculofacioskeletal syndrome caused by mutation(s) in the ERCC6 gene, encoding DNA excision repair protein ERCC-6. [from NCI]
Fanconi anemia complementation group Q
Fanconi anemia (FA) is characterized by physical abnormalities, bone marrow failure, and increased risk for malignancy. Physical abnormalities, present in approximately 75% of affected individuals, include one or more of the following: short stature, abnormal skin pigmentation, skeletal malformations of the upper and/or lower limbs, microcephaly, and ophthalmic and genitourinary tract anomalies. Progressive bone marrow failure with pancytopenia typically presents in the first decade, often initially with thrombocytopenia or leukopenia. The incidence of acute myeloid leukemia is 13% by age 50 years. Solid tumors – particularly of the head and neck, skin, and genitourinary tract – are more common in individuals with FA. [from GeneReviews]
DE SANCTIS-CACCHIONE SYNDROME
A rare autosomal recessive inherited syndrome. It is characterized by xeroderma pigmentosum, mental retardation, dwarfism, hypogonadism, and neurologic abnormalities. [from NCI]
Cerebrooculofacioskeletal syndrome 2
Any COFS syndrome in which the cause of the disease is a mutation in the ERCC2 gene. [from MONDO]
Age related macular degeneration 5
Age-related macular degeneration is an eye disease that is a leading cause of vision loss in older people in developed countries. Subtle abnormalities indicating changes in vision may occur in a person's forties or fifties. Distorted vision and vision loss usually become noticeable in a person's sixties or seventies and tend to worsen over time.Age-related macular degeneration mainly affects central vision, which is needed for detailed tasks such as reading, driving, and recognizing faces. The vision loss in this condition results from a gradual deterioration of light-sensing cells in the tissue at the back of the eye that detects light and color (the retina). Specifically, age-related macular degeneration affects a small area near the center of the retina, called the macula, which is responsible for central vision. Side (peripheral) vision and night vision are generally not affected, but slow adjustment of vision to darkness (dark adaptation) and reduced dim light (scotopic) vision often occur in the early stages of the disease.Researchers have described two major types of age-related macular degeneration, known as the dry form and the wet form. The dry form is much more common, accounting for 85 to 90 percent of all cases of age-related macular degeneration. It is characterized by a buildup of yellowish deposits called drusen beneath the retina and vision loss that worsens slowly over time. The most advanced stage of dry age-related macular degeneration is known as geographic atrophy, in which areas of the macula waste away (atrophy), resulting in severe vision loss. Dry age-related macular degeneration typically affects vision in both eyes, although vision loss often occurs in one eye before the other.In 10 to 15 percent of affected individuals, the dry form progresses to the wet form of age-related macular degeneration. The wet form is characterized by the growth of abnormal, fragile blood vessels underneath the macula. These vessels leak blood and fluid, which damages the macula and makes central vision appear blurry and distorted. The wet form of age-related macular degeneration is associated with severe vision loss that can worsen rapidly. [from MedlinePlus Genetics]
Xeroderma pigmentosum
XFE progeroid syndrome
An autosomal recessive condition caused by mutation(s) in the ERCC4 gene, encoding DNA repair endonuclease XPF. it is characterized by characterized by cutaneous photosensitivity and progeroid features in multiple organ systems. [from NCI]
UV-sensitive syndrome 1
UV-sensitive syndrome-1 (UVSS1) is an autosomal recessive disorder characterized by cutaneous photosensitivity and mild freckling, without an increased risk of skin tumors. Patient cells show impaired recovery of RNA synthesis (RRS) after UV irradiation due to defective preferential repair of DNA damage in actively transcribing genes, although unscheduled DNA repair is normal. The cellular findings are consistent with a defect in transcription-coupled nucleotide excision repair (TC-NER) of UV damage (summary by Horibata et al., 2004). Genetic Heterogeneity of UV-Sensitive Syndrome See also UVSS2 (614621), caused by mutation in the ERCC8 gene (609412) on chromosome 5q12, and UVSS3 (614640), caused by mutation in the UVSSA gene (614632) on chromosome 4p16. [from OMIM]
UV-sensitive syndrome 2
UV-sensitive syndrome-2 (UVSS2) is an autosomal recessive disorder characterized by cutaneous photosensitivity and increased freckling, without an increased risk of skin tumors. Patient cells show impaired recovery of RNA synthesis (RRS) after UV irradiation due to defective preferential repair of DNA damage in actively transcribing genes, although unscheduled DNA repair is normal. The cellular findings are consistent with a defect in transcription-coupled nucleotide excision repair (TC-NER) of UV damage (summary by Nardo et al., 2009). See also Cockayne syndrome type A (CSA; 216400), an allelic disorder with a more severe phenotype including neurologic symptoms and skeletal abnormalities. For a general phenotypic description and a discussion of genetic heterogeneity of UVSS, see UVSS1 (600630). [from OMIM]
ERCC1-Related Xeroderma Pigmentosum
Cerebrooculofacioskeletal syndrome 4
Cerebrooculofacioskeletal syndrome-4 (COFS4) is a severe autosomal recessive disorder characterized by growth retardation, dysmorphic facial features, arthrogryposis, and neurologic abnormalities. Cellular studies show a defect in both transcription-coupled and global genome nucleotide excision repair (TC-NER and GG-NER) (summary by Jaspers et al., 2007 and Kashiyama et al., 2013). For a discussion of genetic heterogeneity of cerebrooculofacioskeletal syndrome, see 214150. [from OMIM]
Cross syndrome
Oculocerebral hypopigmentation syndrome, Cross type is a rare congenital syndrome characterized by cutaneous and ocular hypopigmentation, various ocular anomalies (e.g. corneal and lens opacity, spastic ectropium, and/or nystagmus), growth deficiency, intellectual deficit and other progressive neurologic anomalies such as spastic tetraplegia, hyperreflexia, and/or athetoid movements. The clinical picture varies among patients and may also include other anomalies such as urinary tract abnormalities, Dandy-Walker malformations, and/or bilateral inguinal hernia. [from ORDO]
Cerebrooculofacioskeletal syndrome 3
Cerebrooculofacioskeletal syndrome is a severe, progressive neurologic disorder characterized by prenatal onset of arthrogryposis, microcephaly, and growth failure. Postnatal features include severe developmental delay, congenital cataracts (in some), and marked UV sensitivity of the skin. Survival beyond 6 years of age is rare. COFS represents the severe end of the spectrum of disorders caused by mutations in nucleotide excision repair (NER) genes, with Cockayne syndrome and xeroderma pigmentosum being milder NER-related phenotypes (summary by Drury et al., 2014). For a phenotypic description and a discussion of genetic heterogeneity of cerebrooculofacioskeletal syndrome, see COFS1 (214150). [from OMIM]
Filter your results:
Your browsing activity is empty.
Activity recording is turned off.
Turn recording back on