U.S. flag

An official website of the United States government

Format

Send to:

Choose Destination

Absent outer dynein arms

MedGen UID:
868590
Concept ID:
C4022989
Finding
HPO: HP:0012256

Definition

Absence of the outer dynein arms of respiratory motile cilia, which normally are situated outside of the peripheral microtubules of motile cilia. This feature is usually appreciated by electron microscopy. [from HPO]

Conditions with this feature

Primary ciliary dyskinesia 9
MedGen UID:
390990
Concept ID:
C2676235
Disease or Syndrome
Primary ciliary dyskinesia is an autosomal recessive disorder resulting from loss of normal ciliary function. Kartagener (pronounced KART-agayner) syndrome is characterized by the combination of primary ciliary dyskinesia and situs inversus, and occurs in approximately half of patients with ciliary dyskinesia. Since normal nodal ciliary movement in the embryo is required for normal visceral asymmetry, absence of normal ciliary movement results in a lack of definitive patterning; thus, random chance alone appears to determine whether the viscera take up the normal or reversed left-right position during embryogenesis. This explains why approximately 50% of patients, even within the same family, have situs inversus (Afzelius, 1976; El Zein et al., 2003). For a general description and a discussion of genetic heterogeneity of primary ciliary dyskinesia and Kartagener syndrome, see CILD1 (244400).
Primary ciliary dyskinesia 13
MedGen UID:
413399
Concept ID:
C2750790
Disease or Syndrome
Primary ciliary dyskinesia is a disorder characterized by chronic respiratory tract infections, abnormally positioned internal organs, and the inability to have children (infertility). The signs and symptoms of this condition are caused by abnormal cilia and flagella. Cilia are microscopic, finger-like projections that stick out from the surface of cells. They are found in the linings of the airway, the reproductive system, and other organs and tissues. Flagella are tail-like structures, similar to cilia, that propel sperm cells forward.\n\nIn the respiratory tract, cilia move back and forth in a coordinated way to move mucus towards the throat. This movement of mucus helps to eliminate fluid, bacteria, and particles from the lungs. Most babies with primary ciliary dyskinesia experience breathing problems at birth, which suggests that cilia play an important role in clearing fetal fluid from the lungs. Beginning in early childhood, affected individuals develop frequent respiratory tract infections. Without properly functioning cilia in the airway, bacteria remain in the respiratory tract and cause infection. People with primary ciliary dyskinesia also have year-round nasal congestion and a chronic cough. Chronic respiratory tract infections can result in a condition called bronchiectasis, which damages the passages, called bronchi, leading from the windpipe to the lungs and can cause life-threatening breathing problems.\n\nSome individuals with primary ciliary dyskinesia have abnormally placed organs within their chest and abdomen. These abnormalities arise early in embryonic development when the differences between the left and right sides of the body are established. About 50 percent of people with primary ciliary dyskinesia have a mirror-image reversal of their internal organs (situs inversus totalis). For example, in these individuals the heart is on the right side of the body instead of on the left. Situs inversus totalis does not cause any apparent health problems. When someone with primary ciliary dyskinesia has situs inversus totalis, they are often said to have Kartagener syndrome.\n\nApproximately 12 percent of people with primary ciliary dyskinesia have a condition known as heterotaxy syndrome or situs ambiguus, which is characterized by abnormalities of the heart, liver, intestines, or spleen. These organs may be structurally abnormal or improperly positioned. In addition, affected individuals may lack a spleen (asplenia) or have multiple spleens (polysplenia). Heterotaxy syndrome results from problems establishing the left and right sides of the body during embryonic development. The severity of heterotaxy varies widely among affected individuals.\n\nPrimary ciliary dyskinesia can also lead to infertility. Vigorous movements of the flagella are necessary to propel the sperm cells forward to the female egg cell. Because their sperm do not move properly, males with primary ciliary dyskinesia are usually unable to father children. Infertility occurs in some affected females and is likely due to abnormal cilia in the fallopian tubes.\n\nAnother feature of primary ciliary dyskinesia is recurrent ear infections (otitis media), especially in young children. Otitis media can lead to permanent hearing loss if untreated. The ear infections are likely related to abnormal cilia within the inner ear.\n\nRarely, individuals with primary ciliary dyskinesia have an accumulation of fluid in the brain (hydrocephalus), likely due to abnormal cilia in the brain.
Primary ciliary dyskinesia 16
MedGen UID:
462810
Concept ID:
C3151460
Disease or Syndrome
Primary ciliary dyskinesia-16 (CILD16) is an autosomal recessive disorder characterized by early infantile onset of respiratory distress associated with absence of ciliary outer dynein arms (Mazor et al., 2011). For a general phenotypic description and a discussion of genetic heterogeneity of primary ciliary dyskinesia, see CILD1 (244400).
Primary ciliary dyskinesia 20
MedGen UID:
761920
Concept ID:
C3540844
Disease or Syndrome
CILD20 is an autosomal recessive ciliopathy characterized by infantile onset of chronic sinopulmonary infections resulting from immotile cilia and defective clearance. Patients may also have situs inversus or cardiac anomalies. Electron microscopy of respiratory epithelial cells shows absence of the outer dynein arms. Unlike other forms of CILD, patients with CILD20 do not appear to be infertile. For a phenotypic description and a discussion of genetic heterogeneity of primary ciliary dyskinesia, see 244400.
Primary ciliary dyskinesia 18
MedGen UID:
762331
Concept ID:
C3543825
Disease or Syndrome
Primary ciliary dyskinesia-18 (CILD18) is an autosomal recessive disorder characterized by early infantile onset of recurrent sinopulmonary infections due to ciliary dysfunction and impaired airway clearance. Males are infertile and about half of patients have situs inversus. Electron microscopy of cilia shows a defect of the outer and inner dynein arms and impaired ciliary function (summary by Horani et al., 2012).
Primary ciliary dyskinesia 26
MedGen UID:
816014
Concept ID:
C3809684
Disease or Syndrome
Primary ciliary dyskinesia-26 is an autosomal recessive disorder caused by defective ciliary movement. Affected individuals have neonatal respiratory distress, recurrent upper and lower airway disease, and bronchiectasis. About half of patients show laterality defects, including situs inversus totalis. Respiratory cilia from patients show defects in the inner and outer dynein arms (summary by Austin-Tse et al., 2013). For a general phenotypic description and a discussion of genetic heterogeneity of primary ciliary dyskinesia, see 244400.
Primary ciliary dyskinesia 30
MedGen UID:
863453
Concept ID:
C4015016
Disease or Syndrome
Any primary ciliary dyskinesia in which the cause of the disease is a mutation in the CCDC151 gene.
Kartagener syndrome
MedGen UID:
1646059
Concept ID:
C4551906
Disease or Syndrome
Primary ciliary dyskinesia is a genetically heterogeneous autosomal recessive disorder resulting from loss of function of different parts of the primary ciliary apparatus, most often dynein arms. Kartagener (pronounced KART-agayner) syndrome is characterized by the combination of primary ciliary dyskinesia and situs inversus (270100), and occurs in approximately half of patients with ciliary dyskinesia. Since normal nodal ciliary movement in the embryo is required for normal visceral asymmetry, absence of normal ciliary movement results in a lack of definitive patterning; thus, random chance alone appears to determine whether the viscera take up the normal or reversed left-right position during embryogenesis. This explains why approximately 50% of patients, even within the same family, have situs inversus (Afzelius, 1976; El Zein et al., 2003). Genetic Heterogeneity of Primary Ciliary Dyskinesia Other forms of primary ciliary dyskinesia include CILD2 (606763), caused by mutation in the DNAAF3 gene (614566) on 19q13; CILD3 (608644), caused by mutation in the DNAH5 gene (603335) on 5p15; CILD4 (608646), mapped to 15q13; CILD5 (608647), caused by mutation in the HYDIN gene (610812) on 16q22; CILD6 (610852), caused by mutation in the TXNDC3 gene (607421) on 7p14; CILD7 (611884), caused by mutation in the DNAH11 gene (603339) on 7p15; CILD8 (612274), mapped to 15q24-q25; CILD9 (612444), caused by mutation in the DNAI2 gene (605483) on 17q25; CILD10 (612518), caused by mutation in the DNAAF2 gene (612517) on 14q21; CILD11 (612649), caused by mutation in the RSPH4A gene (612647) on 6q22; CILD12 (612650), caused by mutation in the RSPH9 gene (612648) on 6p21; CILD13 (613193), caused by mutation in the DNAAF1 gene (613190) on 16q24; CILD14 (613807), caused by mutation in the CCDC39 gene (613798) gene on 3q26; CILD15 (613808), caused by mutation in the CCDC40 gene (613799) on 17q25; CILD16 (614017), caused by mutation in the DNAL1 gene (610062) on 14q24; CILD17 (614679), caused by mutation in the CCDC103 gene (614677) on 17q21; CILD18 (614874), caused by mutation in the DNAAF5 gene (614864) on 7p22; CILD19 (614935), caused by mutation in the LRRC6 gene (614930) on 8q24; CILD20 (615067), caused by mutation in the CCDC114 gene (615038) on 19q13; CILD21 (615294), caused by mutation in the DRC1 gene (615288) on 2p23; CILD22 (615444), caused by mutation in the ZMYND10 gene (607070) on 3p21; CILD23 (615451), caused by mutation in the ARMC4 gene (615408) on 10p; CILD24 (615481), caused by mutation in the RSPH1 gene (609314) on 21q22; CILD25 (615482), caused by mutation in the DYX1C1 gene (608706) on 15q21; CILD26 (615500), caused by mutation in the C21ORF59 gene (615494) on 21q22; CILD27 (615504), caused by mutation in the CCDC65 gene (611088) on 12q13; CILD28 (615505), caused by mutation in the SPAG1 gene (603395) on 8q22; CILD29 (615872), caused by mutation in the CCNO gene (607752) on 5q11; CILD30 (616037), caused by mutation in the CCDC151 gene (615956) on 19p13; CILD32 (616481), caused by mutation in the RSPH3 gene (615876) on 6q25; CILD33 (616726), caused by mutation in the GAS8 gene (605178) on 16q24; CILD34 (617091), caused by mutation in the DNAJB13 gene (610263) on 11q13; CILD35 (617092), caused by mutation in the TTC25 gene (617095) on 17q21; CILD36 (300991), caused by mutation in the PIH1D3 gene (300933) on Xq22; CILD37 (617577), caused by mutation in the DNAH1 gene (603332) on 3p21; CILD38 (618063), caused by mutation in the CFAP300 gene (618058) on 11q22; CILD39 (618254), caused by mutation in the LRRC56 gene (618227) on 11p15; CILD40 (618300), caused by mutation in the DNAH9 gene (603330) on 17p12; CILD41 (618449), caused by mutation in the GAS2L2 gene (611398) on 17q12; CILD42 (618695), caused by mutation in the MCIDAS gene (614086) on 5q11; CILD43 (618699), caused by mutation in the FOXJ1 gene (602291) on 17q25; CILD44 (618781), caused by mutation in the NEK10 gene (618726) on 3p24; CILD45 (618801), caused by mutation in the TTC12 gene (610732) on 11q23; CILD46 (619436), caused by mutation in the STK36 gene (607652) on 2q35; CILD47 (619466), caused by mutation in the TP73 gene (601990) on 1p36; CILD48 (620032), caused by mutation in the NME5 gene (603575) on chromosome 5q31; CILD49 (620197), caused by mutation in the CFAP74 gene (620187) on chromosome 1p36; CILD50 (620356), caused by mutation in the DNAH7 gene (610061) on chromosome 2q32; CILD51 (620438), caused by mutation in the BRWD1 gene (617824) on chromosome 21q22; CILD52 (620570), caused by mutation in the DAW1 gene (620279) on chromosome 2q36; and CILD53 (620642), caused by mutation in the CLXN gene (619564) on chromosome 8q11. Ciliary abnormalities have also been reported in association with both X-linked and autosomal forms of retinitis pigmentosa. Mutations in the RPGR gene (312610), which underlie X-linked retinitis pigmentosa (RP3; 300029), are in some instances (e.g., 312610.0016) associated with recurrent respiratory infections indistinguishable from immotile cilia syndrome; see 300455. Afzelius (1979) gave an extensive review of cilia and their disorders. There are also several possibly distinct CILDs described based on the electron microscopic appearance of abnormal cilia, including CILD with transposition of the microtubules (215520), CILD with excessively long cilia (242680), and CILD with defective radial spokes (242670).
Ciliary dyskinesia, primary, 40
MedGen UID:
1648365
Concept ID:
C4749028
Disease or Syndrome
Primary ciliary dyskinesia-40 (CILD40) is an autosomal recessive disorder with a relatively mild respiratory phenotype compared to other CILDs. Patients present in childhood with mild upper respiratory symptoms and infections, but typically do not develop serious lung disease. Nitric oxide levels are low-normal or normal. All reported patients have had situs inversus, including several with severe congenital cardiac malformations, but left-right body asymmetry is still theoretically random and would occur in 50% of patients (summary by Loges et al., 2018). For a discussion of genetic heterogeneity of primary ciliary dyskinesia and Kartagener syndrome, see CILD1 (244400).

Professional guidelines

PubMed

Pifferi M, Bush A, Mulé G, Gracci S, Fonnesu R, Michelucci A, Cangiotti A, Caligo MA, Miccoli M, Boner AL, Peroni D
Ann Am Thorac Soc 2021 Jun;18(6):963-970. doi: 10.1513/AnnalsATS.202007-816OC. PMID: 33760720
Hornef N, Olbrich H, Horvath J, Zariwala MA, Fliegauf M, Loges NT, Wildhaber J, Noone PG, Kennedy M, Antonarakis SE, Blouin JL, Bartoloni L, Nüsslein T, Ahrens P, Griese M, Kuhl H, Sudbrak R, Knowles MR, Reinhardt R, Omran H
Am J Respir Crit Care Med 2006 Jul 15;174(2):120-6. Epub 2006 Apr 20 doi: 10.1164/rccm.200601-084OC. PMID: 16627867Free PMC Article
Fliegauf M, Olbrich H, Horvath J, Wildhaber JH, Zariwala MA, Kennedy M, Knowles MR, Omran H
Am J Respir Crit Care Med 2005 Jun 15;171(12):1343-9. Epub 2005 Mar 4 doi: 10.1164/rccm.200411-1583OC. PMID: 15750039Free PMC Article

Recent clinical studies

Etiology

Pifferi M, Bush A, Mulé G, Gracci S, Fonnesu R, Michelucci A, Cangiotti A, Caligo MA, Miccoli M, Boner AL, Peroni D
Ann Am Thorac Soc 2021 Jun;18(6):963-970. doi: 10.1513/AnnalsATS.202007-816OC. PMID: 33760720
Martinez G, Kherraf ZE, Zouari R, Fourati Ben Mustapha S, Saut A, Pernet-Gallay K, Bertrand A, Bidart M, Hograindleur JP, Amiri-Yekta A, Kharouf M, Karaouzène T, Thierry-Mieg N, Dacheux-Deschamps D, Satre V, Bonhivers M, Touré A, Arnoult C, Ray PF, Coutton C
Hum Reprod 2018 Oct 1;33(10):1973-1984. doi: 10.1093/humrep/dey264. PMID: 30137358
Mitchell V, Sigala J, Ballot C, Jumeau F, Barbotin AL, Duhamel A, Rives N, Rigot JM, Escalier D, Peers MC
Andrologia 2015 Mar;47(2):214-20. Epub 2014 Feb 24 doi: 10.1111/and.12249. PMID: 24611953
Kott E, Duquesnoy P, Copin B, Legendre M, Dastot-Le Moal F, Montantin G, Jeanson L, Tamalet A, Papon JF, Siffroi JP, Rives N, Mitchell V, de Blic J, Coste A, Clement A, Escalier D, Touré A, Escudier E, Amselem S
Am J Hum Genet 2012 Nov 2;91(5):958-64. doi: 10.1016/j.ajhg.2012.10.003. PMID: 23122589Free PMC Article
Fliegauf M, Olbrich H, Horvath J, Wildhaber JH, Zariwala MA, Kennedy M, Knowles MR, Omran H
Am J Respir Crit Care Med 2005 Jun 15;171(12):1343-9. Epub 2005 Mar 4 doi: 10.1164/rccm.200411-1583OC. PMID: 15750039Free PMC Article

Diagnosis

Long S, Fu L, Ma J, Yu H, Tang X, Hu T, Han W, Liu W, Liao H, Fu T, Huang G, Lu W, Lin T
Andrology 2024 Feb;12(2):349-364. Epub 2023 Jun 20 doi: 10.1111/andr.13476. PMID: 37302001
Pifferi M, Bush A, Mulé G, Gracci S, Fonnesu R, Michelucci A, Cangiotti A, Caligo MA, Miccoli M, Boner AL, Peroni D
Ann Am Thorac Soc 2021 Jun;18(6):963-970. doi: 10.1513/AnnalsATS.202007-816OC. PMID: 33760720
Solomon GM, Francis R, Chu KK, Birket SE, Gabriel G, Trombley JE, Lemke KL, Klena N, Turner B, Tearney GJ, Lo CW, Rowe SM
JCI Insight 2017 Mar 9;2(5):e91702. doi: 10.1172/jci.insight.91702. PMID: 28289722Free PMC Article
Roomans GM, Ivanovs A, Shebani EB, Johannesson M
Ups J Med Sci 2006;111(1):155-68. doi: 10.3109/2000-1967-010. PMID: 16553254
Jorissen M, Willems T, Van der Schueren B, Verbeken E, De Boeck K
Acta Otorhinolaryngol Belg 2000;54(3):343-56. PMID: 11082771

Therapy

Mazor M, Alkrinawi S, Chalifa-Caspi V, Manor E, Sheffield VC, Aviram M, Parvari R
Am J Hum Genet 2011 May 13;88(5):599-607. Epub 2011 Apr 14 doi: 10.1016/j.ajhg.2011.03.018. PMID: 21496787Free PMC Article
Hornef N, Olbrich H, Horvath J, Zariwala MA, Fliegauf M, Loges NT, Wildhaber J, Noone PG, Kennedy M, Antonarakis SE, Blouin JL, Bartoloni L, Nüsslein T, Ahrens P, Griese M, Kuhl H, Sudbrak R, Knowles MR, Reinhardt R, Omran H
Am J Respir Crit Care Med 2006 Jul 15;174(2):120-6. Epub 2006 Apr 20 doi: 10.1164/rccm.200601-084OC. PMID: 16627867Free PMC Article
Vevaina JR, Teichberg S, Buschman D, Kirkpatrick CH
Chest 1987 Jan;91(1):91-5. doi: 10.1378/chest.91.1.91. PMID: 2947784

Prognosis

Sagel SD, Kupfer O, Wagner BD, Davis SD, Dell SD, Ferkol TW, Hoppe JE, Rosenfeld M, Sullivan KM, Tiddens HAWM, Knowles MR, Leigh MW
Ann Am Thorac Soc 2023 Jan;20(1):67-74. doi: 10.1513/AnnalsATS.202204-314OC. PMID: 35984413Free PMC Article
Pifferi M, Bush A, Mulé G, Gracci S, Fonnesu R, Michelucci A, Cangiotti A, Caligo MA, Miccoli M, Boner AL, Peroni D
Ann Am Thorac Soc 2021 Jun;18(6):963-970. doi: 10.1513/AnnalsATS.202007-816OC. PMID: 33760720
Schwabe GC, Hoffmann K, Loges NT, Birker D, Rossier C, de Santi MM, Olbrich H, Fliegauf M, Failly M, Liebers U, Collura M, Gaedicke G, Mundlos S, Wahn U, Blouin JL, Niggemann B, Omran H, Antonarakis SE, Bartoloni L
Hum Mutat 2008 Feb;29(2):289-98. doi: 10.1002/humu.20656. PMID: 18022865

Clinical prediction guides

Sagel SD, Kupfer O, Wagner BD, Davis SD, Dell SD, Ferkol TW, Hoppe JE, Rosenfeld M, Sullivan KM, Tiddens HAWM, Knowles MR, Leigh MW
Ann Am Thorac Soc 2023 Jan;20(1):67-74. doi: 10.1513/AnnalsATS.202204-314OC. PMID: 35984413Free PMC Article
Pinto AL, Rasteiro M, Bota C, Pestana S, Sampaio P, Hogg C, Burgoyne T, Lopes SS
Int J Mol Sci 2021 Aug 4;22(16) doi: 10.3390/ijms22168361. PMID: 34445067Free PMC Article
Martinez G, Kherraf ZE, Zouari R, Fourati Ben Mustapha S, Saut A, Pernet-Gallay K, Bertrand A, Bidart M, Hograindleur JP, Amiri-Yekta A, Kharouf M, Karaouzène T, Thierry-Mieg N, Dacheux-Deschamps D, Satre V, Bonhivers M, Touré A, Arnoult C, Ray PF, Coutton C
Hum Reprod 2018 Oct 1;33(10):1973-1984. doi: 10.1093/humrep/dey264. PMID: 30137358
Kott E, Duquesnoy P, Copin B, Legendre M, Dastot-Le Moal F, Montantin G, Jeanson L, Tamalet A, Papon JF, Siffroi JP, Rives N, Mitchell V, de Blic J, Coste A, Clement A, Escalier D, Touré A, Escudier E, Amselem S
Am J Hum Genet 2012 Nov 2;91(5):958-64. doi: 10.1016/j.ajhg.2012.10.003. PMID: 23122589Free PMC Article
Jorissen M, Willems T, Van der Schueren B, Verbeken E, De Boeck K
Acta Otorhinolaryngol Belg 2000;54(3):343-56. PMID: 11082771

Supplemental Content

Table of contents

    Clinical resources

    Practice guidelines

    • PubMed
      See practice and clinical guidelines in PubMed. The search results may include broader topics and may not capture all published guidelines. See the FAQ for details.

    Consumer resources

    Recent activity

    Your browsing activity is empty.

    Activity recording is turned off.

    Turn recording back on

    See more...