NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE47964 Query DataSets for GSE47964
Status Public on Jun 15, 2013
Title Activation of the aryl hydrocarbon receptor by dioxin during embryonic stem cell differentiation disrupts the expression of homeobox transcription factors that control cardiomyogenesis
Organism Mus musculus
Experiment type Expression profiling by high throughput sequencing
Summary The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that regulates the expression of xenobiotic detoxification genes and is a critical mediator of gene-environment interactions. In addition, many AHR target genes that have been identified by genome-wide profiling have morphogenetic functions, suggesting that AHR activation may play a role in embryonic development. To address this hypothesis, we studied the consequences of AHR activation by TCDD, its prototypical ligand, during spontaneous mouse ES cell differentiation into contractile cardiomyocytes. Treatment with TCDD or shRNA-mediated AHR knockdown significantly decreased the ability of cardiomyocytes to contract and the expression of cardiac markers in these cells. An AHR-positive embryonic stem cell lineage was generated that expressed puromycin resistance and eGFP under the control of the AHR-responsive Cyp1a1 promoter. Cells of this lineage were over 90% pure and expressed AHR as well as cardiomyocyte markers. Analysis of temporal trajectories of global gene expression in these cells shows that activation of the AHR/TCDD axis disrupts the concerted expression of genes that regulate multiple signaling pathways involved in cardiac and neural morphogenesis and differentiation, including dozens of genes encoding homeobox transcription factors and Polycomb and Trithorax Group genes. More than 50% of the homeobox factors so regulated do not have AhRE sites in their promoters, indicating that AHR activation may establish a complex regulatory network that reaches beyond direct AHR signaling and is capable of disrupting various aspects of embryonic development, including cardiomyocyte differentiation.
 
Overall design mRNA profiles of WT and selected AHR positive cells at different differentiation days treated with and without TCDD in duplicates
 
Contributor(s) Wang Q, Chen J, Ko C, Fan Y, Carreira V, Chen Y, Medvedovic M, Puga A
Citation(s) 24058054
Submission date Jun 14, 2013
Last update date May 15, 2019
Contact name Mario Medvedovic
Organization name University of Cincinnati
Department Department of Environmental Health
Lab Laboratory for Statistical Genomics and Systems Biology
Street address 3223 Eden Av. ML 56
City Cincinnati
State/province OH
ZIP/Postal code 45267-0056
Country USA
 
Platforms (1)
GPL15103 Illumina HiSeq 1000 (Mus musculus)
Samples (24)
GSM1163671 Unselected DIFFD11 0TRT Rep 1
GSM1163672 Unselected DIFFD14 0TRT Rep 1
GSM1163673 Selected AHR DIFFD5 PURO Rep 1
Relations
BioProject PRJNA208492
SRA SRP026045

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE47964_countTable.txt.gz 796.9 Kb (ftp)(http) TXT
SRA Run SelectorHelp
Raw data are available in SRA
Processed data are available on Series record

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap