Cardiomyopathy in type 1 diabetic patients is characterized by early onset diastolic and late onset systolic dysfunction. The mechanism underlying development of diastolic and systolic dysfunction in diabetes remains unknown. We used microarrays to detail the ventricle gene expression changes that underly development of diabetic cardiomyopathy. We identified distinct classes of up-regulated genes during this process. Keywords: disease state analysis, time course
Overall design
150g male Wistar rats (Harlan) we injected with 65 mg/kg streptozotocin to induce Type 1 diabetes. Four replicates of Control and Diabetic rat ventricles were removed and frozen at Three time points for total RNA isolation and hybridization on the Affymetrix RG-U34A microarray. The 3 day samples show a baseline for initial diabetic changes in the ventricle. The 28 day samples show changes associated with diastolic dysfunction in diabetes. The 42 day samples show changes associated with both diastolic and systolic dysfunction in type 1 diabetic rat ventricles.