NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE274215 Query DataSets for GSE274215
Status Public on Oct 09, 2024
Title Negative feedback of cyclic di-GMP levels optimizes switching between sessile and motile lifestyles in Vibrio cholerae [ChIP-seq]
Organism Vibrio cholerae C6706
Experiment type Genome binding/occupancy profiling by high throughput sequencing
Summary The signaling molecule cyclic di-GMP (cdG) controls the switch between bacterial motility and biofilm production, and fluctuations in cellular levels of cdG have been implicated in Vibrio cholerae pathogenesis. Intracellular concentrations of cdG are controlled by the interplay of diguanylate cyclase (DGC) enzymes, which synthesize cdG to promote biofilms, and phosphodiesterase (PDE) enzymes, which hydrolyse cdG to drive motility. To track the complete regulatory logic of how V. cholerae responds to changing cdG levels, we followed a time course of overexpression of either the V. harveyi diguanylate cyclase QrgB or a variant of QrgB lacking catalytic activity (QrgB*). We find that QrgB increases cdG levels relative to QrgB* for 30 minutes after overexpression, but the effect of QrgB on cdG levels plateaus at 30 minutes, indicating tight adaptive control of cdG levels. In contrast, loss of VpsR, a master regulator activating biofilm formation upon binding to cdG, leads to higher baseline levels of cdG and continuously increasing cdG through 60 minutes after QrgB induction, revealing the existence of a negative feedback loop on cdG levels operating through VpsR. Through a combination of RNA polymerase ChIP-seq, RNA-seq, and genetic approaches, we show that the PDE CdgC is activated by VpsR at high cdG concentrations, mediating this negative feedback on cdG levels. We further identify a transcript encoded within, and antisense to, the cdgC open reading frame which we name sRNA negative regulator of CdgC (SnrC). RNA polymerase ChIP-seq and RNA-seq demonstrate SnrC to be expressed specifically under conditions of high cdG in the absence of VpsR. Ectopic SnrC expression increases cdG levels in a manner depending on CdgC, demonstrating that its effect on cdG levels is likely through interference with CdgC production. Further, although cells lacking cdgC exhibit enhanced biofilm formation, these mutants are outcompeted by wild type V. cholerae in colonization assays that reward a combination of attachment, dispersal, and motility. These results underscore the importance of negative feedback regulation of cdG to maintain appropriate homeostatic levels for efficient transitioning between biofilm formation and motility, both of which are necessary over the course of the V. cholerae infection cycle.
 
Overall design Chromatin immunoprecipitation (ChIP) of RNA polymerase in Vibrio cholerae in the following genotypes: WT, delta-vpsR, delta-vpsT
 
Contributor(s) Rangarajan AA, Schroeder JW, Hurto RL, Severin GB, Hsieh M, Waters CM, Freddolino L
Citation(s) 39257796
Submission date Aug 07, 2024
Last update date Oct 10, 2024
Contact name Lydia Freddolino
E-mail(s) lydsf@umich.edu
Organization name University of Michigan
Department Biological Chemistry
Lab Freddolino
Street address 1136 Catherine St
City Ann Arbor
State/province MI
ZIP/Postal code 48109
Country USA
 
Platforms (1)
GPL34804 Illumina NextSeq 500 (Vibrio cholerae C6706)
Samples (91)
GSM8445241 wt_inactive_QrgB_00min_s1_inp
GSM8445242 wt_inactive_QrgB_00min_s2_inp
GSM8445243 wt_inactive_QrgB_15min_s1_inp
Relations
BioProject PRJNA1145414

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE274215_RAW.tar 438.4 Mb (http)(custom) TAR (of BW)
GSE274215_vpsR_p1_t0_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_vpsR_p1_t1_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_vpsR_p1_t2_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_vpsR_p1_t3_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_vpsR_p2_t0-vpsR_p1_t0_both_strand_Beta_mean.bedgraph.gz 8.2 Mb (ftp)(http) BEDGRAPH
GSE274215_vpsR_p2_t0-wt_p2_t0_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_vpsR_p2_t0_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_vpsR_p2_t1-vpsR_p1_t1_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_vpsR_p2_t1-wt_p2_t1_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_vpsR_p2_t1_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_vpsR_p2_t2-vpsR_p1_t2_both_strand_Beta_mean.bedgraph.gz 8.2 Mb (ftp)(http) BEDGRAPH
GSE274215_vpsR_p2_t2-wt_p2_t2_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_vpsR_p2_t2_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_vpsR_p2_t3-vpsR_p1_t3_both_strand_Beta_mean.bedgraph.gz 8.2 Mb (ftp)(http) BEDGRAPH
GSE274215_vpsR_p2_t3-wt_p2_t3_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_vpsR_p2_t3_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_vpsT_p1_t0_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_vpsT_p1_t1_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_vpsT_p1_t2_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_vpsT_p1_t3_both_strand_Beta_mean.bedgraph.gz 8.2 Mb (ftp)(http) BEDGRAPH
GSE274215_vpsT_p2_t0-vpsT_p1_t0_both_strand_Beta_mean.bedgraph.gz 8.2 Mb (ftp)(http) BEDGRAPH
GSE274215_vpsT_p2_t0-wt_p2_t0_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_vpsT_p2_t0_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_vpsT_p2_t1-vpsT_p1_t1_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_vpsT_p2_t1-wt_p2_t1_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_vpsT_p2_t1_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_vpsT_p2_t2-vpsT_p1_t2_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_vpsT_p2_t2-wt_p2_t2_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_vpsT_p2_t2_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_vpsT_p2_t3-vpsT_p1_t3_both_strand_Beta_mean.bedgraph.gz 8.2 Mb (ftp)(http) BEDGRAPH
GSE274215_vpsT_p2_t3-wt_p2_t3_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_vpsT_p2_t3_both_strand_Beta_mean.bedgraph.gz 8.2 Mb (ftp)(http) BEDGRAPH
GSE274215_wt_p1_t0_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_wt_p1_t1_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_wt_p1_t2_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_wt_p1_t3_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_wt_p2_t0-wt_p1_t0_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_wt_p2_t0_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_wt_p2_t1-wt_p1_t1_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_wt_p2_t1_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_wt_p2_t2-wt_p1_t2_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_wt_p2_t2_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
GSE274215_wt_p2_t3-wt_p1_t3_both_strand_Beta_mean.bedgraph.gz 8.2 Mb (ftp)(http) BEDGRAPH
GSE274215_wt_p2_t3_both_strand_Beta_mean.bedgraph.gz 8.1 Mb (ftp)(http) BEDGRAPH
SRA Run SelectorHelp
Raw data are available in SRA

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap