NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE193203 Query DataSets for GSE193203
Status Public on Jan 17, 2023
Title Bacterial lifestyle switch in response to algal metabolites
Organism Sulfitobacter sp. D7
Experiment type Expression profiling by high throughput sequencing
Summary Unicellular algae, termed phytoplankton, greatly impact the marine environment by serving as the basis of marine food webs and by playing central roles in biogeochemical cycling of elements. The interactions between phytoplankton and heterotrophic bacteria affect the fitness of both partners. It is becoming increasingly understood that metabolic exchange determines the nature of such interactions, but the underlying molecular mechanisms remain underexplored. Here, we investigated the molecular and metabolic basis for the bacterial lifestyle switch, from coexistence to pathogenicity, in Sulfitobacter D7 during interactions with Emiliania huxleyi, a cosmopolitan bloom-forming phytoplankter. The interaction displays two distinct phases: first, there is a coexisting phase in which the alga grows exponentially and the bacterium grows as well. The interaction shifts to pathogenic when the virulence of Sulfitobacter D7 towards E. huxleyi is invoked upon exposure to high concentrations of algal dimethylsulfoniopropionate (DMSP), which occurs when the algae reach stationary growth or when DMSP is applied exogenously to algae in exponential growth. We aimed to unravel the response of Sulfitobacter D7 to the pathogenicity-inducing compound, DMSP, and to different algae-derived infochemicals that affect the lifestyle of the bacterium. We grew Sulfitobacter D7 in conditioned media (CM) derived from algal cultures at the different growth phases, exponential and stationary (Exp-CM and Stat-CM, respectively), in which DMSP concentration is low and high, respectively. This enabled us to separate between different phases of the interaction with E. huxleyi, i.e., Exp-CM representing the coexisting phase, and Stat-CM representing the pathogenic phase. An additional pathogenicity-inducing treatment was Exp-CM supplemented with 100 µM DMSP (herein Exp-CM+DMSP). This condition mimicked co-cultures to which we added DMSP exogenously and thus induced Sulfitobacter D7 pathogenicity, which lead to death of exponentially growing E. huxleyi. In order to identify bacterial genes that are specifically responsive to DMSP, and are not affected by other algae-derived factors, we grew Sulfitobacter D7 in defined minimal medium (MM), lacking algal metabolites, supplemented with 100 µM DMSP (herein MM+DMSP), and examined the transcriptional response. After 24 h of Sulfitobacter D7 growth in all 5 media, triplicates were taken for transcriptomic analysis. Altogether, this experimental design allowed to expand our understanding on the bacterial response to DMSP, algal infochemicals and which of these are essential for coexistence and pathogenicity.
 
Overall design Total of 15 samples were analyzed, which include triplicates of the 5 following treatments: Exp-CM, Exp-CM+DMSP, Stat-CM, MM, MM+DMSP.
 
Contributor(s) Barak-Gavish N, Dassa B, Kuhlisch C, Nussbaum I, Rosenberg G, Avraham R, Vardi A
Citation(s) 36691727
Submission date Jan 07, 2022
Last update date Feb 07, 2023
Contact name Noa Barak-Gavish
Organization name Weizmann Institute of Science
Department Plant and Environmental Sciences
Lab Prof. Assaf Vardi
Street address POB 26
City Rehovot
ZIP/Postal code 76100
Country Israel
 
Platforms (1)
GPL31185 Illumina NextSeq 500 (Sulfitobacter sp. D7)
Samples (15)
GSM5776380 ExpCM-1
GSM5776381 ExpCM-2
GSM5776382 ExpCM-3
Relations
BioProject PRJNA795422

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE193203_DESeq.txt.gz 796.0 Kb (ftp)(http) TXT
SRA Run SelectorHelp
Raw data are available in SRA
Processed data are available on Series record

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap