|
|
GEO help: Mouse over screen elements for information. |
|
Status |
Public on Mar 03, 2021 |
Title |
Non-coding RNAs in the transcriptional network that differentiates skeletal muscles of sedentary from long-term endurance- and resistance-trained elderly (microarray) |
Platform organism |
synthetic construct |
Sample organism |
Homo sapiens |
Experiment type |
Non-coding RNA profiling by array
|
Summary |
In a previous study, the whole transcriptome of the vastus lateralis muscle from sedentary elderly and from age-matched athletes with an exceptional record of high-intensity, life-long exercise training was compared, the two groups representing the two ends of a physical activity scale. Exercise training enabled the skeletal muscle to counteract age-related sarcopenia by inducing a wide range of adaptations, sustained by the expression of protein-coding genes involved in energy handling, proteostasis, cytoskeletal organization, inflammation control, and cellular senescence. Building on the previous study, we examined here the network of non-coding RNAs participating in the orchestration of gene expression and identified differentially expressed micro- and long-non-coding RNAs and some of their possible targets and roles. Unsupervised hierarchical clustering analyses of all non-coding RNAs were able to discriminate between sedentary and trained individuals, regardless of the exercise typology. Validated targets of differentially expressed miRNA were grouped by KEGG analysis, which pointed to functional areas involved in cell cycle, cytoskeletal control, longevity, and many signaling pathways, including AMPK and mTOR, which had been shown to be pivotal in the modulation of the effects of high-intensity, life-long exercise training. The analysis of differentially expressed long-non-coding RNAs identified transcriptional networks, involving lncRNAs, miRNAs and mRNAs, affecting processes in line with the beneficial role of exercise training.
|
|
|
Overall design |
all subjects were aged men (65 to 80 years); 5 were fully sedentary subjects; 4 were exceptionally trained subjects practicing mostly resistance exercise; 5 were exceptionally trained subjects practicing mostly endurance exercise
|
|
|
Contributor(s) |
De Sanctis P, Filardo G, Abruzzo PM, Astolfi A, Bolotta A, Indio V, Di Martino A, Hofer C, Kern H, Lofler S, Marcacci M, Marini M, Zampieri S, Zucchini C |
Citation(s) |
33546468 |
|
Submission date |
Jan 27, 2021 |
Last update date |
Mar 03, 2021 |
Contact name |
Valentina Indio |
Organization name |
University of Bologna
|
Street address |
via Giuseppe Massarenti,11
|
City |
Bologna |
State/province |
Bologna |
ZIP/Postal code |
40127 |
Country |
Italy |
|
|
Platforms (1) |
GPL19117 |
[miRNA-4] Affymetrix Multispecies miRNA-4 Array |
|
Samples (14)
|
GSM5047161 |
muscle of sedentary aged subject # 4 |
GSM5047162 |
muscle of sedentary aged subject # 5 |
GSM5047163 |
muscle of well resistance trained aged subject #1 |
GSM5047164 |
muscle of well resistance trained aged subject #2 |
GSM5047165 |
muscle of well resistance trained aged subject #3 |
GSM5047166 |
muscle of well resistance trained aged subject #4 |
GSM5047167 |
muscle of well endurance trained aged subject #1 |
GSM5047168 |
muscle of well endurance trained aged subject #2 |
GSM5047169 |
muscle of well endurance trained aged subject #3 |
GSM5047170 |
muscle of well endurance trained aged subject #4 |
GSM5047171 |
muscle of well endurance trained aged subject #5 |
|
This SubSeries is part of SuperSeries: |
GSE165633 |
Non-coding RNAs in the transcriptional network that differentiates skeletal muscles of sedentary from long-term endurance- and resistance-trained elderly |
|
Relations |
BioProject |
PRJNA695371 |
Supplementary file |
Size |
Download |
File type/resource |
GSE165632_RAW.tar |
10.1 Mb |
(http)(custom) |
TAR (of CEL) |
Processed data included within Sample table |
|
|
|
|
|