NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE107041 Query DataSets for GSE107041
Status Public on May 28, 2018
Title The whole genome effects of the PPARα agonist fenofibrate on livers of hepatocyte humanized mice
Platform organism Homo sapiens
Sample organism Mus musculus
Experiment type Expression profiling by array
Summary The role of PPARα in gene regulation in mouse liver is well characterized. However, less is known about the effect of PPARα activation in human liver. The aim of the present study was to better characterize the impact of PPARα activation on gene regulation in human liver by combining transcriptomics with the use of hepatocyte humanized livers. To that end, chimeric mice containing hepatocyte humanized livers were given an oral dose of 300 mg/kg fenofibrate daily for 4 days. Livers were collected and analysed by hematoxilin and eosin staining, qPCR, and transcriptomics. Transcriptomics data were compared with existing datasets on fenofibrate treatment in normal mice. The human hepatocytes exhibited excessive lipid accumulation. Fenofibrate increased the size of the mouse but not human hepatocytes, and tended to reduce steatosis in the human hepatocytes. Quantitative PCR indicated that induction of PPARα targets by fenofibrate was less pronounced in the human hepatocytes than in the residual mouse hepatocytes. Transcriptomics analysis indicated that, after filtering, a total of 282 genes was significantly different between fenofibrate- and control-treated mice (P<0.01). 123 genes were significantly lower and 159 genes significantly higher in the fenofibrate-treated mice, including many established PPARα targets such as FABP1, HADHB, HADHA, VNN1, PLIN2, ACADVL and HMGCS2. According to gene set enrichment analysis, fenofibrate upregulated interferon/cytokine signaling-related pathways in hepatocyte humanized liver, but downregulated these pathways in normal mouse liver. Also, fenofibrate downregulated pathways related to DNA synthesis in hepatocyte humanized liver but not in normal mouse liver. The results support the major role of PPARα in regulating hepatic lipid metabolism, and underscore the more modest effect of PPARα activation on gene regulation in human liver compared to mouse liver. The data suggest that PPARα may have a suppressive effect on DNA synthesis in human liver, and a stimulatory effect on interferon/cytokine signalling.
 
Overall design Chimeric mice with humanized livers were given an oral dose of 300 mg/kg fenofibrate daily for 4 days after which the hepatic transcriptome was analyzed.
 
Contributor(s) de la Rosa Rodriguez MA, Sugahara G, Ishida Y, Tateno C, Kersten S
Citation(s) 29879903
Submission date Nov 16, 2017
Last update date Aug 27, 2018
Contact name Guido Hooiveld
E-mail(s) guido.hooiveld@wur.nl
Organization name Wageningen University
Department Div. Human Nutrition & Health
Lab Nutrition, Metabolism & Genomics Group
Street address HELIX, Stippeneng 4
City Wageningen
ZIP/Postal code NL-6708WE
Country Netherlands
 
Platforms (1)
GPL11532 [HuGene-1_1-st] Affymetrix Human Gene 1.1 ST Array [transcript (gene) version]
Samples (6)
GSM2859983 Humanized mouse liver, control treatment, replicate 1
GSM2859984 Humanized mouse liver, control treatment, replicate 2
GSM2859985 Humanized mouse liver, control treatment, replicate 3
Relations
BioProject PRJNA418862

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE107041_RAW.tar 23.8 Mb (http)(custom) TAR (of CEL)
Processed data included within Sample table

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap