U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Search results

Items: 1 to 20 of 480

1.

Desiccation induces varied responses within a soil bacterial genus

(Submitter supplied) Nine Curtobacterium strains (three from three clades) were subjected to a lab desiccation experiment with no access to moisture or nutrients to compare between clades. RNA was extracted at days 0, 1, and 32 and sequenced
Organism:
Curtobacterium
Type:
Expression profiling by high throughput sequencing
Platform:
GPL33356
81 Samples
Download data: CSV, SF
Series
Accession:
GSE230266
ID:
200230266
2.

Maize root bacteria degrade host-specialized metabolites through the lactonase BxdA

(Submitter supplied) Root exudates contain specialised metabolites that affect the plant’s root microbiome. How host-specific microbes cope with these bioactive compounds, and how this ability shapes root microbiomes, remains largely unknown. We investigated how maize root bacteria metabolise benzoxazinoids, the main specialised metabolites of maize. Diverse and abundant bacteria metabolised the major compound in the maize rhizosphere MBOA and formed AMPO. more...
Organism:
Microbacterium sp. LMB2-1.2
Type:
Expression profiling by high throughput sequencing
Platform:
GPL34376
10 Samples
Download data: TXT
Series
Accession:
GSE263275
ID:
200263275
3.

Transcriptomic analysis of Paenarthrobacter nicotinovorans ATCC 49919 nicotine metabolism

(Submitter supplied) Paenarthrobacter nicotinovorans pAO1 is a nicotine degrading microorganism that shows promising applications in converting nicotine-containing waste into useful green chemicals. Its biotechnological applications are nevertheless hampered by the lack of knowledge and tools to perform genetic and metabolic engineering. The objective of the work is to provide the first transcriptome of the strain and is a second step in our envisioned complete omics characterization of nicotine metabolism in P. more...
Organism:
Paenarthrobacter nicotinovorans
Type:
Expression profiling by high throughput sequencing
Platform:
GPL33653
21 Samples
Download data: GTF, TXT
Series
Accession:
GSE240220
ID:
200240220
4.

Transcriptome profiling of Microbacterium resistens MZT7 reveals mechanisms of 17β-estradiol response and biotransformation

(Submitter supplied) 17β-estradiol (E2) pollution has attracted much attention, and the existence of E2 poses certain risks to the environment and human health. However, the mechanism of microbial degradation of E2 remains unclear. In this study, the location of E2-degrading enzymes was investigated, and transcriptome analysis of Microbacterium resistens MZT7 (M. resistens MZT7) exposed to E2. The degradation of E2 by M. more...
Organism:
Microbacterium resistens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL32589
6 Samples
Download data: TXT
Series
Accession:
GSE211838
ID:
200211838
5.

Transcriptomic analysis of ON4T cells growing with and without molinate

(Submitter supplied) Identify the genes coding for the potential enzymes involved in molinate degradation
Organism:
Gulosibacter molinativorax
Type:
Expression profiling by high throughput sequencing
Platform:
GPL25387
2 Samples
Download data: TXT
Series
Accession:
GSE117691
ID:
200117691
6.

Dissecting the co-transcriptome landscape of plants and microbiota

(Submitter supplied) Interactions between plants and each neighboring microbial species are fundamental building blocks that collectively determine the structure and function of the plant microbiota, but the molecular basis of such interactions is poorly characterized. Here, we monocolonized Arabidopsis leaves with nine plant-associated bacteria from all major phyla of the plant microbiota and profiled co-transcriptomes of plants and bacteria. more...
Organism:
Plantibacter sp. Leaf1; Rhizobium sp. Leaf155; Exiguobacterium sp. Leaf187; Arabidopsis thaliana; Pedobacter sp. Leaf176; Burkholderia sp. Leaf177; Chryseobacterium sp. Leaf404; Acinetobacter sp. Leaf130; Arthrobacter sp. Soil763; Flavobacterium sp. Root935
Type:
Expression profiling by high throughput sequencing
10 related Platforms
125 Samples
Download data: FNA, TXT
Series
Accession:
GSE150422
ID:
200150422
7.

RNA-seq of Pseudarthrobacter psychrotolerans YJ56: on temperature

(Submitter supplied) Comparison for gene expression of Pseudarthrobacter psychrotolerans YJ56: grown on 13℃ or 25℃
Organism:
Pseudarthrobacter psychrotolerans
Type:
Expression profiling by high throughput sequencing
Platform:
GPL29770
2 Samples
Download data: XLSX
Series
Accession:
GSE167471
ID:
200167471
8.

Mechanisms underlying growth inhibition of a denitrifier by reduced sulfur compounds

(Submitter supplied) Competition among nitrate reducing bacteria (NRB) and sulfate reducing bacteria (SRB) for resources in anoxic environments is generally thought to be governed largely by thermodynamics. It is now recognized that intermediates of nitrogen and sulfur cycling (e.g., hydrogen sulfide, nitrite, etc.) can also directly impact NRB and SRB activities in freshwater, wastewater and sediment, and therefore may play important roles in competitive interactions. more...
Organism:
Intrasporangium calvum
Type:
Expression profiling by high throughput sequencing
Platform:
GPL29204
48 Samples
Download data: FASTA, TXT
Series
Accession:
GSE158822
ID:
200158822
9.

Effect of Calcium Chloride Concentrations on the Transcriptome of Brevibacterium lines

(Submitter supplied) A urease positive marine actinobacterium Brevibacterium lines was demonstrated to form and dissolve calcite precipitation in conditions with different concentration of Ca2+. Next-generation sequencing (NGS) was used to analyze the transcriptome of B. lines under 0, 50 and 150 mM Ca2+ after 24 h incubation to discover the differentially expressed genes involved. Results provide insight into the molecular response of B. more...
Organism:
Brevibacterium linens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL22927
3 Samples
Download data: TXT
Series
Accession:
GSE93668
ID:
200093668
10.

Transcriptomic analysis of Arthrobacter sp. CGMCC 3584 responding to pde gene knockout

(Submitter supplied) Arthrobacter sp. CGMCC 3584 are able to produce high yields of extracellular cyclic adenosine monophosphate (cAMP), which plays a vital role in the field of treatment of disease and animal food, during aerobic fermentation. Comparative transcriptomic analysis revealed that arpde inactivation had two major effects on metabolism: inhibition of glycolysis, PP pathway, and amino acid metabolism; promotion of the purine metabolism and carbon flux from the precursor PRPP, which benefited cAMP production.
Organism:
Clostridium acetobutylicum; Arthrobacter sp.; Arthrobacter sp. CGMCC 3584
Type:
Expression profiling by array
Platform:
GPL19013
8 Samples
Download data: TXT
Series
Accession:
GSE134961
ID:
200134961
11.

Detection of carbohydrate-active enzyme genes in the rumen of young lambs

(Submitter supplied) In this study, we studied the fibrolytic potential of the rumen microbiota in the rumen of 6 lambs separated from their dams from 12h of age and artificially fed with milk replacer (MR) and starter feed from d8, in absence (3 lambs) or presence (3 lambs) of a combination of the live yeast Saccharomyces cerevisiae CNCM I-1077 and selected yeast metabolites. The fibrolytic potential of the rumen microbiota of the lambs at 56 days of age was analyzed with a DNA microarray (FibroChip) targeting genes coding for 8 glycoside hydrolase (GH) families.
Organism:
Selenomonas ruminantium; Lactococcus lactis; Clostridioides difficile; Ruminiclostridium cellulolyticum; Limosilactobacillus fermentum; Cellulomonas flavigena; Neocallimastix patriciarum; Bifidobacterium animalis; Agathobacter rectalis; Enterobacter sp.; Orpinomyces joyonii; Piromyces rhizinflatus; Piromyces sp. 'equi'; Pseudobutyrivibrio xylanivorans; Bifidobacterium longum; Bacteroides thetaiotaomicron; Fibrobacter succinogenes; Clostridium cellulovorans; Bifidobacterium adolescentis; Cellulomonas fimi; Neocallimastix frontalis; [Eubacterium] cellulosolvens; Lachnospira eligens; Ruminococcus sp.; Piromyces sp.; Roseburia intestinalis; Roseburia hominis; Bacteroides fragilis; Xylanibacter ruminicola; Ruminococcus albus; Enterococcus faecium; Clostridium acetobutylicum; Acetivibrio thermocellus; Clostridium beijerinckii; Levilactobacillus brevis; Microbiota; Bacteroides ovatus; Fibrobacter intestinalis; Bacteroides sp.; Epidinium caudatum; Polyplastron multivesiculatum; Butyrivibrio hungatei; Epidinium ecaudatum; Bacteroides xylanisolvens; Cellulosilyticum ruminicola; Ruminococcus champanellensis; Orpinomyces sp.; Butyrivibrio fibrisolvens; Ruminococcus flavefaciens; Piromyces communis; Pseudobacteroides cellulosolvens; Eudiplodinium maggii; Segatella bryantii; Acetivibrio clariflavus; uncultured Neocallimastigales
Type:
Genome variation profiling by array
Platform:
GPL25777
6 Samples
Download data: TXT
Series
Accession:
GSE122256
ID:
200122256
12.

Light enhances growth in non-phototropic Actinobacteria (Rhodoluna lacicola strain Ta8)

(Submitter supplied) Light is a source of energy and an environmental cue that is available in excess in most surface environments. In prokaryotic systems, conversion of light to energy by photoautotrophs and photoheterotrophs is well understood, but the conversion of light to information and the cellular response to that information has been characterized in only a few species. Our goal was to explore the response of freshwater Actinobacteria, which are ubiquitous in illuminated aquatic environments, to light. more...
Organism:
Rhodoluna lacicola
Type:
Expression profiling by high throughput sequencing
Platform:
GPL25297
8 Samples
Download data: TXT
Series
Accession:
GSE116706
ID:
200116706
13.

Light enhances growth in non-phototropic Actinobacteria (Aurantimicrobium sp. MWH-Mo1)

(Submitter supplied) Light is a source of energy and an environmental cue that is available in excess in most surface environments. In prokaryotic systems, conversion of light to energy by photoautotrophs and photoheterotrophs is well understood, but the conversion of light to information and the cellular response to that information has been characterized in only a few species. Our goal was to explore the response of freshwater Actinobacteria, which are ubiquitous in illuminated aquatic environments, to light. more...
Organism:
Aurantimicrobium photophilum
Type:
Expression profiling by high throughput sequencing
Platform:
GPL25296
8 Samples
Download data: TXT
Series
Accession:
GSE116705
ID:
200116705
14.

Gene expression of the bacterium Glutamicibacter arilaitensis when grown with Penicillium in cheese

(Submitter supplied) RNA-seq was used in combination with various analytical chemistry approaches to identify the chemical and genetic basis of pigment production of the bacterium Glutamicibacter arilaitensis when growing on cheese. This bacterium commonly found in cheese rinds where it co-occurs with Penicillium species and other molds. Pinkish-red pigments are produced by the bacterium in response to growth with Penicillium. more...
Organism:
Glutamicibacter arilaitensis
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24753
8 Samples
Download data: TXT
Series
Accession:
GSE112092
ID:
200112092
15.

The FibroChip, a functional DNA microarray to monitor cellulolysis and hemicellulolysis activities of rumen microbiota

(Submitter supplied) Ruminants are the most efficient herbivorous animals to transform plant biomass into edible products, principally thanks to the rumen microbiota that produces a large array of enzymes responsible for the hydrolysis of plant cell wall polysaccharides. Several biotic and abiotic factors influence the efficiency of fiber degradation, which can ultimately impact the animal productivity and health. To provide more insight on mechanisms involved in the modulation of fibrolytic activity, a functional DNA microarray targeting genes coding for key enzymes involved in cellulose and hemicellulose degradation by rumen microbiota was designed. more...
Organism:
Butyrivibrio fibrisolvens; Selenomonas ruminantium; Lactococcus lactis; Clostridioides difficile; Ruminiclostridium cellulolyticum; Cellulomonas flavigena; Neocallimastix patriciarum; Bifidobacterium animalis; Agathobacter rectalis; Enterobacter sp.; Escherichia coli K-12; Pseudobutyrivibrio xylanivorans; Bifidobacterium longum; uncultured Neocallimastigales; Bacteroides thetaiotaomicron; Fibrobacter succinogenes; Xylanibacter ruminicola; Clostridium acetobutylicum; Clostridium cellulovorans; Bifidobacterium adolescentis; Cellulomonas fimi; Neocallimastix frontalis; Bacteroides ovatus; [Eubacterium] cellulosolvens; Bacteroides sp.; Lachnospira eligens; Ruminococcus sp.; Piromyces sp.; Roseburia intestinalis; Butyrivibrio hungatei; Roseburia hominis; bovine gut metagenome; Bacteroides xylanisolvens XB1A; Orpinomyces sp.; Bacteroides fragilis; Ruminococcus albus; Enterococcus faecium; Acetivibrio thermocellus; Clostridium beijerinckii; Levilactobacillus brevis; Fibrobacter intestinalis; Epidinium caudatum; Polyplastron multivesiculatum; Orpinomyces joyonii; Piromyces rhizinflatus; Piromyces sp. 'equi'; Epidinium ecaudatum; Bacteroides xylanisolvens; Cellulosilyticum ruminicola; Ruminococcus champanellensis; Ruminococcus flavefaciens; Limosilactobacillus fermentum; Piromyces communis; Pseudobacteroides cellulosolvens; Eudiplodinium maggii; Fibrobacter succinogenes subsp. succinogenes S85; Segatella bryantii; Acetivibrio clariflavus
Type:
Expression profiling by array; Other
Platform:
GPL24327
14 Samples
Download data: TXT
Series
Accession:
GSE107550
ID:
200107550
16.

Transcriptomic analysis of Arthrobacter sp. CGMCC 3584 responding to dissolved oxygen for cAMP production

(Submitter supplied) Arthrobacter sp. CGMCC 3584 are able to produce high yields of extracellular cyclic adenosine monophosphate (cAMP), which plays a vital role in the field of treatment of disease and animal food, during aerobic fermentation. DNA array-based transcriptional analysis of Arthrobacter cells was conducted to elucidate the higher productivity of cAMP under high oxygen supply. Results showed that 14.1% and 19.3% of the whole genome genes were up-regulated and down-regulated notably, respectively. more...
Organism:
Clostridium acetobutylicum; Arthrobacter sp.; Arthrobacter sp. CGMCC 3584
Type:
Expression profiling by array
Platform:
GPL19013
8 Samples
Download data: TXT
Series
Accession:
GSE99546
ID:
200099546
17.

Distinct gene expression profile of Xanthomonas retroflexus engaged in synergistic multispecies biofilm formation

(Submitter supplied) It is well known that bacteria often exist in naturally formed multispecies biofilms. Within these biofilms, interspecies interactions seem to play an important role in ecological processes. Little is known about the effects of interspecies interactions on gene expression in these multispecies biofilms. This study presents a comparative gene expression analysis of the Xanthomonas retroflexus transcriptome when grown in a single-species biofilm and in dual- and four-species consortia with Stenotrophomonas rhizophila, Microbacterium oxydans and Paenibacillus amylolyticus. more...
Organism:
Stenotrophomonas rhizophila; Paenibacillus amylolyticus; Microbacterium oxydans; Xanthomonas retroflexus
Type:
Expression profiling by high throughput sequencing
5 related Platforms
17 Samples
Download data: FASTA, TXT
Series
Accession:
GSE80267
ID:
200080267
18.

The Epigenomic Landscape of Prokaryotes

(Submitter supplied) DNA methylation is an important regulator of genome function in the eukaryotes, but it is currently unclear if the same is true in prokaryotes. While regulatory functions have been demonstrated for a small number of bacteria, there have been no large-scale studies of prokaryotic methylomes and the full repertoire of targets and biological functions of DNA methylation remains unclear. Here we applied single-molecule, real-time sequencing to directly study the methylomes of 232 phylogenetically diverse prokaryotes. more...
Organism:
Teredinibacter turnerae; Escherichia coli CFT073; Salmonella bongori NCTC 12419; Treponema denticola ATCC 35405; Akkermansia muciniphila ATCC BAA-835; Phaeobacter inhibens DSM 17395; Actinosynnema mirum DSM 43827; Staphylococcus aureus subsp. aureus USA300_TCH1516; Sphaerobacter thermophilus DSM 20745; Veillonella parvula DSM 2008; Streptobacillus moniliformis DSM 12112; Allomeiothermus silvanus DSM 9946; Sedimentitalea nanhaiensis DSM 24252; Sediminispirochaeta smaragdinae DSM 11293; Hirschia baltica ATCC 49814; Coraliomargarita akajimensis DSM 45221; Syntrophothermus lipocalidus DSM 12680; Stutzerimonas stutzeri RCH2; Syntrophobotulus glycolicus DSM 8271; Bacillus spizizenii str. W23; Phocaeicola salanitronis DSM 18170; Pseudofrankia sp. DC12; Nitratifractor salsuginis DSM 16511; Cellulophaga lytica DSM 7489; Asinibacterium sp. OR53; Solitalea canadensis DSM 3403; Patulibacter minatonensis DSM 18081; Acetobacterium woodii DSM 1030; Nocardia sp. BMG51109; Halomicrobium katesii DSM 19301; Nitriliruptor alkaliphilus DSM 45188; Methylophilus sp. 1; Pseudomonas aeruginosa NCAIM B.001380; Kangiella aquimarina DSM 16071; Pelobacter seleniigenes DSM 18267; Thiomicrospira pelophila DSM 1534; Desulfurobacterium sp. TC5-1; Bacteroides sp. 14(A); Clostridium sp. 12(A); Hydrogenovibrio kuenenii DSM 12350; Leptolyngbya sp. PCC 6406; Maribacter sp. Hel_I_7; Desulfospira joergensenii DSM 10085; Tolumonas lignilytica; Cellvibrionaceae bacterium 1162T.S.0a.05; Lacrimispora indolis SR3; Lacrimispora indolis DSM 755; Desulforegula conservatrix Mb1Pa; Oceanicola sp. HL-35; Algoriphagus marincola HL-49; Desulfohalovibrio reitneri; Alicyclobacillus macrosporangiidus CPP55; Pseudacidobacterium ailaaui; Mediterraneibacter gnavus AGR2154; Sediminibacter sp. Hel_I_10; Hydrogenovibrio sp. MA2-6; Pseudobutyrivibrio ruminis HUN009; Lachnoclostridium phytofermentans KNHs212; Robinsoniella sp. KNHs210; Lactococcus lactis subsp. lactis; Lactiplantibacillus plantarum; Lachnobacterium bovis; Clostridium perfringens ATCC 13124; Methanocaldococcus jannaschii DSM 2661; Methylorubrum extorquens AM1; Thermoplasma volcanium GSS1; Acidobacteriaceae bacterium TAA 166; Mycoplasmopsis bovis PG45; Methanospirillum hungatei JF-1; Actinobacillus succinogenes 130Z; Fervidobacterium nodosum Rt17-B1; Bifidobacterium longum subsp. infantis ATCC 15697 = JCM 1222 = DSM 20088; Staphylothermus marinus F1; Thermoanaerobacter sp. X514; Xenorhabdus nematophila ATCC 19061; Galbibacter orientalis; Dyadobacter fermentans DSM 18053; Streptosporangium roseum DSM 43021; Pedobacter heparinus DSM 2366; Rhizobium etli CIAT 652; Meiothermus ruber DSM 1279; Planctopirus limnophila DSM 3776; Methanothermus fervidus DSM 2088; Sebaldella termitidis ATCC 33386; Methanohalophilus mahii DSM 5219; Aminobacterium colombiense DSM 12261; Acidobacteriaceae bacterium KBS 146; Pontibacter actiniarum DSM 19842; Thermobacillus composti KWC4; Marinithermus hydrothermalis DSM 14884; Bernardetia litoralis DSM 6794; Desulfobacca acetoxidans DSM 11109; Rikenella microfusus DSM 15922; Echinicola vietnamensis DSM 17526; Orenia marismortui DSM 5156; Sporocytophaga myxococcoides DSM 11118; Niabella soli DSM 19437; Sinorhizobium medicae WSM1115; Hippea alviniae EP5-r; Hippea sp. KM1; Sphingomonas melonis C3; Methylophilaceae bacterium 11; Thioalkalivibrio sp. ARh3; Thiomonas sp. FB-6; Oxalobacteraceae bacterium AB_14; Solidesulfovibrio cf. magneticus IFRC170; Desulfotignum balticum DSM 7044; Methylobacterium sp. EUR3 AL-11; Kallotenue papyrolyticum; Bryobacter aggregatus MPL3; Ruminococcus albus AD2013; Eubacterium sp. AB3007; Ruminococcaceae bacterium AE2021; Lachnospiraceae bacterium AC2031; Selenomonas ruminantium AC2024; Selenomonas sp. AB3002; Peptostreptococcaceae bacterium VA2; Ruminococcus sp. HUN007; Enterococcus gallinarum; Clostridium algidicarnis; Pyrococcus horikoshii OT3; Methylocystis sp. LW5; Agrobacterium fabrum str. C58; Persephonella; Mastigocladopsis repens PCC 10914; Neisseria gonorrhoeae FA 1090; Clostridioides difficile 630; Thiobacillus denitrificans ATCC 25259; Salmonella enterica subsp. enterica serovar Paratyphi A str. ATCC 9150; Sulfurimonas denitrificans DSM 1251; Sulfolobus acidocaldarius DSM 639; Flavobacterium psychrophilum JIP02/86; Methanocorpusculum labreanum Z; Cronobacter; Pseudarthrobacter chlorophenolicus A6; Saccharomonospora viridis DSM 43017; Verrucomicrobia bacterium LP2A; Thermanaerovibrio acidaminovorans DSM 6589; Corynebacterium aurimucosum ATCC 700975; Zymomonas mobilis subsp. pomaceae ATCC 29192; Klebsiella aerogenes FGI35; Cellulophaga algicola DSM 14237; Flexistipes sinusarabici DSM 4947; Sulfurospirillum barnesii SES-3; Gillisia limnaea DSM 15749; Spirochaeta thermophila DSM 6578; Ruminococcus sp. NK3A76; Spirochaeta africana DSM 8902; Holophaga foetida DSM 6591; Salmonella enterica subsp. enterica serovar Paratyphi B str. SPB7; Acetivibrio clariflavus 4-2a; Thermacetogenium phaeum DSM 12270; Methylophilus sp. 5; Arthrobacter sp. 31Y; Methylophilus sp. 42; Methylotenera versatilis 79; Psychrilyobacter atlanticus DSM 19335; Prevotella sp. 10(H); Methylotenera sp. 73s; Acidovorax sp. JHL-3; Gillisia sp. JM1; Cellulomonas sp. KRMCY2; Clostridium sp. ASBs410; Limisalsivibrio acetivorans; Polaromonas sp. EUR3 1.2.1; Levilactobacillus brevis AG48; Pediococcus acidilactici AGR20; Exiguobacterium chiriqhucha; Prevotella sp. HUN102; Flavimarina sp. Hel_I_48; Lachnospiraceae bacterium AC2012; Clostridioides mangenotii LM2; Exiguobacterium aurantiacum DSM 6208; Exiguobacterium acetylicum DSM 20416; Exiguobacterium oxidotolerans JCM 12280; Exiguobacterium antarcticum DSM 14480; Methylobacter tundripaludum 21/22; Lachnoclostridium phytofermentans KNHs2132; Staphylococcus epidermidis AG42; Butyrivibrio sp. AE3003; Streptococcus equinus; Salmonella enterica subsp. arizonae serovar 62:z4,z23:-; Xylella fastidiosa Temecula1; Acetivibrio thermocellus ATCC 27405; Rhodopseudomonas palustris CGA009; Neisseria meningitidis FAM18; Thermoplasma acidophilum DSM 1728; Hydrogenovibrio crunogenus XCL-2; Chloroflexus aggregans DSM 9485; Thermosipho melanesiensis BI429; Shewanella woodyi ATCC 51908; Bradyrhizobium elkanii USDA 76; Dinoroseobacter shibae DFL 12 = DSM 16493; Parabacteroides distasonis ATCC 8503; Anoxybacillus flavithermus WK1; Escherichia coli str. K-12 substr. MG1655; Capnocytophaga ochracea DSM 7271; Haloterrigena turkmenica DSM 5511; Palaeococcus ferrophilus DSM 13482; Acetivibrio thermocellus DSM 1313; Gracilinema caldarium DSM 7334; Treponema succinifaciens DSM 2489; Caldithrix abyssi DSM 13497; Calidithermus chliarophilus DSM 9957; Cohnella panacarvi Gsoil 349; Methylobacterium sp. 10; Xanthobacter sp. 91; Geopsychrobacter electrodiphilus DSM 16401; Hydrogenovibrio marinus DSM 11271; Nocardia sp. BMG111209; Klebsiella oxytoca BRL6-2; Polaribacter sp. Hel_I_88; Methylohalobius crimeensis 10Ki; Streptomyces sp. WMMB 714; Ruminiclostridium josui JCM 17888; Alteromonas sp. ALT199; Aminiphilus circumscriptus DSM 16581; Caldicoprobacter oshimai DSM 21659; Microbacterium sp. KROCY2; Thermogemmatispora carboxidivorans; Ruminococcus flavefaciens AE3010; Butyrivibrio sp. FCS014; Polycyclovorans algicola TG408; Clostridium sp. KNHs205; Lachnospiraceae bacterium AC2029; Enterococcus faecalis 68A; Butyrivibrio sp. AE3004; Teredinibacter purpureus
Type:
Methylation profiling by high throughput sequencing
228 related Platforms
237 Samples
Download data: CSV, GFF
Series
Accession:
GSE69872
ID:
200069872
19.

Transcriptional responses of Arthrobacter chlorophenolicus to the exposure to laboratory induced matric and solute stress

(Submitter supplied) We study the transcriptional reactions of bacteria interesting for biodegradation under laboratory conditions that mimic water stress. We compared the transcriptomes of cultures growing exponential phase under optimal conditions versus their responses to an osmotic shock of 30 min in exponential phase. The osmotic shock consisted in a reduction of water potential induced by salt (NaCl, solute stress) or by polyethylene glycol (PEG8000, matric stress). more...
Organism:
Pseudarthrobacter chlorophenolicus A6
Type:
Expression profiling by array
Platform:
GPL17332
14 Samples
Download data: TXT
Series
Accession:
GSE69023
ID:
200069023
20.

Transcriptomic analysis of Clostridium acetobutylicum biofilm cells in repeated-batch fermentation

(Submitter supplied) Previously, we performed DNA array-based transcriptomic analysis of Clostridium acetobutylicum biofilm adsorbed onto fibrous matrix in batch fermentation. Here, to further shed light on the transcriptomic modulation of maturing Clostridium acetobutylicum biofilm, we performed the DNA array-based transcriptomic analysis in repeated-batch fermentation. Significant time course changes in expression levels were observed for the genes involved in amino acid metabolism, oligopeptide ABC transporter, nitrogen fixation, and various other processes.
Organism:
Clostridium acetobutylicum; Arthrobacter sp.; Clostridium acetobutylicum DSM 1731
Type:
Expression profiling by array
Platform:
GPL19020
8 Samples
Download data: TXT
Series
Accession:
GSE72765
ID:
200072765
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=txid85006[Organism]|query=1|qty=402|blobid=MCID_67392330c6023e543c251e59|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Search details

See more...

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center