U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Search results

Items: 1 to 20 of 222

1.

Elemental sulfur enhances the anti-fungal effect of Lacticaseibacillus rhamnosus Lcr35

(Submitter supplied) Lacticaseibacillus rhamnosus Lcr35 is a well-known bacterial strain whose efficiency in preventing recurrent vulvovaginal candidiasis has been largely demonstrated in clinical trials. The presence of sodium thiosulfate (STS) has been shown to enhance its ability to inhibit the growth of C. albicans strains. In this study, we confirmed that Lcr35 has a fungicidal effect not only on the planktonic form of C. more...
Organism:
Lacticaseibacillus rhamnosus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL33752
9 Samples
Download data: TXT
Series
Accession:
GSE242938
ID:
200242938
2.

Phenotypic and transcriptional analysis of the antimicrobial effect of lactic acid bacteria on carbapenem-resistant Acinetobacter baumannii: Lacticaseibacillus rhamnosus CRL 2244 an alternative strategy to fight it

(Submitter supplied) Carbapenem-resistant Acinetobacter baumannii (CRAB) is a recognized nosocomial pathogen with limited therapeutics options. Lactic acid bacteria (LAB) constitute a promising therapeutic alternative. Here we aimed to study the antibacterial properties of a collection of LAB strains using phenotypic and transcriptomic analysis against A. baumannii clinical strains. One strain, Lacticaseibacillus rhamnosus CRL 2244, exerts a strong inhibitory capacity on A. more...
Organism:
Acinetobacter baumannii; Lacticaseibacillus rhamnosus
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL28641 GPL33555
6 Samples
Download data: TXT
Series
Accession:
GSE236782
ID:
200236782
3.

Spacer prioritization in CRISPR-Cas9 immunity is enabled by the leader RNA

(Submitter supplied) RIP-seq analysis to identify SpyCas9 and LrhCas9 bound RNAs using co-immunoprecipitation and sequencing.
Organism:
Lacticaseibacillus rhamnosus; Escherichia coli
Type:
Other
Platforms:
GPL30159 GPL21222
12 Samples
Download data: WIG
Series
Accession:
GSE158637
ID:
200158637
4.

Ribosome profiling and RNA sequencing reveal genome-wide cellular translation and transcription regulation under osmotic stress in Lactobacillus rhamnosus ATCC 53103

(Submitter supplied) To determine whether osmotic pressure affects the translation efficiency of Lactobacillus rhamnosus, the ribosome profiling assay was performed to analyze the changes in translation efficiency in L. rhamnosus ATCC 53103. Under osmotic stress, differentially expressed genes (DEGs) involved in fatty acid biosynthesis and metabolism, ribosome, and purine metabolism pathways were co-regulated with consistent expression direction at translation and transcription levels. more...
Organism:
Lacticaseibacillus rhamnosus GG
Type:
Expression profiling by high throughput sequencing; Other
Platforms:
GPL30958 GPL30959
6 Samples
Download data: TXT
Series
Accession:
GSE188929
ID:
200188929
5.

Lactobacillus rhamnosus GG Genomic and Phenotypic Stability in an Industrial Production Process

(Submitter supplied) Lactobacillus rhamnosus GG has become one of the most widely marketed and studied probiotic strains. Several genes important for probiotic function have been identified, including the spaCBA-srtC1 gene cluster encoding pili, which have been shown to be important for certain of its probiotic properties. The spaCBA-srtC1 gene cluster has been reported to be unstable in L. rhamnosus GG isolated from liquid dairy products and therefore the present study examined the L. more...
Organism:
Lacticaseibacillus rhamnosus
Type:
Genome variation profiling by high throughput sequencing
Platform:
GPL25928
40 Samples
Download data: FASTA
Series
Accession:
GSE123727
ID:
200123727
6.

RNA-seq analysis of Lactobacillus at acidic stress

(Submitter supplied) To understand transcriptional regulation of probiotic bacteria under acidic condition, RNAseq analysis was carried out over different growth conditions
Organism:
Lacticaseibacillus rhamnosus GG
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24302
9 Samples
Download data: CSV
Series
Accession:
GSE107337
ID:
200107337
7.

Influence of manufacturing processes on cell surface properties of probiotic strain Lactobacillus rhamnosus Lcr35®

(Submitter supplied) Investigation of whole genome gene expression level changes in Lcr35® pharmaceutical formulations, compared to the native strain.
Organism:
Lactobacillus; Lacticaseibacillus rhamnosus
Type:
Expression profiling by array
Platform:
GPL18863
9 Samples
Download data: CALLS, PAIR
Series
Accession:
GSE58820
ID:
200058820
8.

Synbiotic impact of tagatose on viability of Lactobacillus rhamnosus strain GG mediated by the phosphotransferase system (PTS)

(Submitter supplied) The presence of tagatose in Lactobacillus rhamnosus strain GG caused induction of a large number of genes associated with carbohydrate metabolism including the phosphotransferase system. In addition, these results indicate the tagatose enhanced the growth of Lactobacillus casei 01 and Lactobacillus rhamnosus strain GG and their probiotic activities by activating tagatose-associated PTS networks.
Organism:
Lacticaseibacillus rhamnosus GG
Type:
Expression profiling by array
Platform:
GPL16093
1 Sample
Download data: TXT
Series
Accession:
GSE41073
ID:
200041073
9.

Growth phase-associated changes in Lactobacillus rhamnosus GG

(Submitter supplied) Transcriptional profiling of probiotic Lactobacillus rhamnosus GG during growth in industrial-type whey medium in pH-controlled bioreactor cultures at two different growth pH: 4.8 and 5.8. Keywords: growth phase, growth pH
Organism:
Lacticaseibacillus rhamnosus GG
Type:
Expression profiling by array
Platform:
GPL10580
66 Samples
Download data: GPR
Series
Accession:
GSE28903
ID:
200028903
10.

Lactobacillus plantarum IMDO 130201, a wheat sourdough isolate, adapts to growth in wheat sourdough simulation medium at different pH values through differential gene expression

(Submitter supplied) Sourdough is a very competitive and challenging environment for microorganisms. Usually, a stable microbiota composed of lactic acid bacteria (LAB) and yeasts comes to dominate this ecosystem. Although rich in carbohydrates, thus providing an ideal environment to grow, the low pH presents a particular challenge. The nature of the adaptation to this low pH was investigated for Lactobacillus plantarum IMDO 130201, an isolate from a laboratory wheat sourdough fermentation. more...
Organism:
Oenococcus oeni; Streptococcus thermophilus; Lactobacillus acidophilus; Weissella confusa; Lentilactobacillus hilgardii; Latilactobacillus sakei; Brevibacterium linens; Companilactobacillus mindensis; Leuconostoc mesenteroides; Pediococcus acidilactici; Pediococcus pentosaceus; Enterococcus faecium; Levilactobacillus brevis; Lactobacillus helveticus; Lactiplantibacillus plantarum; Companilactobacillus alimentarius; Fructilactobacillus fructivorans; Leuconostoc citreum; Limosilactobacillus pontis; Lactobacillus crispatus; Lactiplantibacillus paraplantarum; Limosilactobacillus frumenti; Furfurilactobacillus rossiae; Lentilactobacillus buchneri; Lactobacillus delbrueckii; Lactiplantibacillus pentosus; Lactobacillus gasseri; Limosilactobacillus reuteri; Lactobacillus amylovorus; Latilactobacillus curvatus; Lactobacillus johnsonii; Leuconostoc pseudomesenteroides; Enterococcus casseliflavus; Mammaliicoccus lentus; Limosilactobacillus panis; Companilactobacillus paralimentarius; Staphylococcus aureus; Enterococcus faecalis; Enterococcus hirae; Lactococcus lactis; Lacticaseibacillus casei; Lacticaseibacillus paracasei; Companilactobacillus farciminis; Limosilactobacillus fermentum; Fructilactobacillus sanfranciscensis; Bifidobacterium; Lacticaseibacillus rhamnosus; Enterococcus mundtii; Lentilactobacillus parabuchneri
Type:
Expression profiling by array
Platform:
GPL10874
10 Samples
Download data: TXT
Series
Accession:
GSE23945
ID:
200023945
11.

Bile stress response in probiotic Lactobacillus rhamnosus GG

(Submitter supplied) Transcriptional profiling of probiotic Lactobacillus rhamnosus strain GG mid-exponential pH-controlled bioreactor cultures before and after exposure to bovine bile (0.2% ox gall). Keywords: bile, stress response
Organism:
Lacticaseibacillus rhamnosus GG; Lacticaseibacillus rhamnosus
Type:
Expression profiling by array
Platform:
GPL10580
12 Samples
Download data: GPR
Series
Accession:
GSE22536
ID:
200022536
12.

Analysis of natural wheat and spelt sourdough ecosystem during a 10-day spontaneous laboratory fermentation

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Pediococcus pentosaceus; Enterococcus faecium; Companilactobacillus alimentarius; Lactobacillus amylovorus; Fructilactobacillus fructivorans; Brevibacterium linens; Limosilactobacillus pontis; Enterococcus casseliflavus; Limosilactobacillus panis; Leuconostoc mesenteroides; Oenococcus oeni; Staphylococcus aureus; Lactococcus lactis; Levilactobacillus brevis; Lactiplantibacillus plantarum; Lacticaseibacillus paracasei; Latilactobacillus sakei; Lacticaseibacillus rhamnosus; Enterococcus mundtii; Lentilactobacillus parabuchneri; Furfurilactobacillus rossiae; Streptococcus thermophilus; Lactobacillus acidophilus; Lentilactobacillus buchneri; Weissella confusa; Lactobacillus delbrueckii; Lentilactobacillus hilgardii; Lactobacillus gasseri; Companilactobacillus farciminis; Fructilactobacillus sanfranciscensis; Bifidobacterium; Leuconostoc pseudomesenteroides; Companilactobacillus mindensis; Pediococcus acidilactici; Enterococcus faecalis; Enterococcus hirae; Lacticaseibacillus casei; Lactobacillus helveticus; Lactiplantibacillus pentosus; Limosilactobacillus reuteri; Limosilactobacillus fermentum; Latilactobacillus curvatus; Lactobacillus johnsonii; Leuconostoc citreum; Mammaliicoccus lentus; Lactobacillus crispatus; Lactiplantibacillus paraplantarum; Companilactobacillus paralimentarius; Limosilactobacillus frumenti
Type:
Expression profiling by array
Platform:
GPL5459
34 Samples
Download data: TXT
Series
Accession:
GSE15803
ID:
200015803
13.

Meta-transcriptome analysis of a natural wheat sourdough ecosystem during a 10-day spontaneous, laboratory fermentation

(Submitter supplied) Lactic acid bacteria (LAB) are of industrial importance in the production of fermented foods, among which sourdough-derived products. Despite their limited metabolic capacity LAB contribute considerably to important characteristics of fermented foods, among which extended shelf-life, microbial safety, improved texture, and enhanced organoleptic properties. Thanks to the considerable amount of LAB genomic information that became available during the last years, transcriptome, and by extension meta-transcriptome studies, are the exquisite research approaches to study whole ecosystem gene expression into more detail. more...
Organism:
Leuconostoc mesenteroides; Pediococcus acidilactici; Levilactobacillus brevis; Lentilactobacillus buchneri; Lactobacillus delbrueckii; Lactobacillus helveticus; Limosilactobacillus reuteri; Latilactobacillus curvatus; Lactobacillus johnsonii; Leuconostoc citreum; Leuconostoc pseudomesenteroides; Mammaliicoccus lentus; Lactobacillus crispatus; Lactiplantibacillus paraplantarum; Limosilactobacillus frumenti; Streptococcus thermophilus; Enterococcus faecalis; Lactobacillus acidophilus; Lacticaseibacillus casei; Weissella confusa; Lentilactobacillus hilgardii; Companilactobacillus farciminis; Fructilactobacillus sanfranciscensis; Bifidobacterium; Brevibacterium linens; Limosilactobacillus pontis; Companilactobacillus mindensis; Oenococcus oeni; Staphylococcus aureus; Enterococcus hirae; Lactococcus lactis; Lactiplantibacillus pentosus; Lacticaseibacillus paracasei; Latilactobacillus sakei; Limosilactobacillus fermentum; Lacticaseibacillus rhamnosus; Enterococcus mundtii; Companilactobacillus paralimentarius; Lentilactobacillus parabuchneri; Pediococcus pentosaceus; Enterococcus faecium; Lactiplantibacillus plantarum; Lactobacillus gasseri; Companilactobacillus alimentarius; Lactobacillus amylovorus; Fructilactobacillus fructivorans; Enterococcus casseliflavus; Limosilactobacillus panis; Furfurilactobacillus rossiae
Type:
Expression profiling by array
Platform:
GPL5459
9 Samples
Download data: TXT
Series
Accession:
GSE15693
ID:
200015693
14.

Meta-transcriptome analysis of a natural spelt sourdough ecosystem during a 10-day spontaneous laboratory fermentation.

(Submitter supplied) Lactic acid bacteria (LAB) are of industrial importance in the production of fermented foods, among which sourdough-derived products. Despite their limited metabolic capacity LAB contribute considerably to important characteristics of fermented foods, among which extended shelf-life, microbial safety, improved texture, and enhanced organoleptic properties. Thanks to the considerable amount of LAB genomic information that became available during the last years, transcriptome, and by extension meta-transcriptome studies, are the exquisite research approaches to study whole ecosystem gene expression into more detail. more...
Organism:
Pediococcus pentosaceus; Staphylococcus aureus; Enterococcus faecium; Lactiplantibacillus plantarum; Lactobacillus gasseri; Companilactobacillus alimentarius; Fructilactobacillus fructivorans; Enterococcus casseliflavus; Furfurilactobacillus rossiae; Enterococcus faecalis; Lactobacillus acidophilus; Lacticaseibacillus casei; Weissella confusa; Lentilactobacillus hilgardii; Companilactobacillus farciminis; Fructilactobacillus sanfranciscensis; Bifidobacterium; Brevibacterium linens; Limosilactobacillus pontis; Limosilactobacillus frumenti; Companilactobacillus mindensis; Enterococcus hirae; Lactococcus lactis; Lactiplantibacillus pentosus; Lacticaseibacillus paracasei; Latilactobacillus sakei; Lactobacillus amylovorus; Limosilactobacillus fermentum; Limosilactobacillus panis; Lacticaseibacillus rhamnosus; Enterococcus mundtii; Companilactobacillus paralimentarius; Lentilactobacillus parabuchneri; Leuconostoc mesenteroides; Oenococcus oeni; Pediococcus acidilactici; Streptococcus thermophilus; Levilactobacillus brevis; Lentilactobacillus buchneri; Lactobacillus delbrueckii; Lactobacillus helveticus; Limosilactobacillus reuteri; Latilactobacillus curvatus; Lactobacillus johnsonii; Leuconostoc citreum; Leuconostoc pseudomesenteroides; Mammaliicoccus lentus; Lactobacillus crispatus; Lactiplantibacillus paraplantarum
Type:
Expression profiling by array
Platform:
GPL5459
9 Samples
Download data: TXT
Series
Accession:
GSE15692
ID:
200015692
15.

Meta-transcriptome analysis of a natural spelt sourdough ecosystem during a 10-day spontaneous laboratory fermentation

(Submitter supplied) Lactic acid bacteria (LAB) are of industrial importance in the production of fermented foods, among which sourdough-derived products. Despite their limited metabolic capacity LAB contribute considerably to important characteristics of fermented foods, among which extended shelf-life, microbial safety, improved texture, and enhanced organoleptic properties. Thanks to the considerable amount of LAB genomic information that became available during the last years, transcriptome, and by extension meta-transcriptome studies, are the exquisite research approaches to study whole ecosystem gene expression into more detail. more...
Organism:
Leuconostoc mesenteroides; Oenococcus oeni; Streptococcus thermophilus; Lactobacillus acidophilus; Levilactobacillus brevis; Lentilactobacillus buchneri; Lactobacillus delbrueckii; Lentilactobacillus hilgardii; Limosilactobacillus reuteri; Latilactobacillus sakei; Latilactobacillus curvatus; Leuconostoc citreum; Leuconostoc pseudomesenteroides; Companilactobacillus mindensis; Pediococcus acidilactici; Pediococcus pentosaceus; Enterococcus faecalis; Enterococcus faecium; Lacticaseibacillus casei; Weissella confusa; Lactobacillus helveticus; Companilactobacillus farciminis; Fructilactobacillus fructivorans; Fructilactobacillus sanfranciscensis; Bifidobacterium; Brevibacterium linens; Limosilactobacillus pontis; Lactobacillus crispatus; Lactiplantibacillus paraplantarum; Limosilactobacillus frumenti; Enterococcus hirae; Lactiplantibacillus pentosus; Lactobacillus amylovorus; Limosilactobacillus fermentum; Lactobacillus johnsonii; Mammaliicoccus lentus; Limosilactobacillus panis; Lacticaseibacillus rhamnosus; Enterococcus mundtii; Companilactobacillus paralimentarius; Staphylococcus aureus; Lactococcus lactis; Lactiplantibacillus plantarum; Lactobacillus gasseri; Lacticaseibacillus paracasei; Companilactobacillus alimentarius; Enterococcus casseliflavus; Lentilactobacillus parabuchneri; Furfurilactobacillus rossiae
Type:
Expression profiling by array
Platform:
GPL5459
7 Samples
Download data: TXT
Series
Accession:
GSE15691
ID:
200015691
16.

Meta-transcriptome analysis of a natural wheat sourdough ecosystem during a 10-day spontaneous laboratory fermentation

(Submitter supplied) Lactic acid bacteria (LAB) are of industrial importance in the production of fermented foods, among which sourdough-derived products. Despite their limited metabolic capacity LAB contribute considerably to important characteristics of fermented foods, among which extended shelf-life, microbial safety, improved texture, and enhanced organoleptic properties. Thanks to the considerable amount of LAB genomic information that became available during the last years, transcriptome, and by extension meta-transcriptome studies, are the exquisite research approaches to study whole ecosystem gene expression into more detail. more...
Organism:
Pediococcus acidilactici; Enterococcus faecalis; Enterococcus hirae; Lacticaseibacillus casei; Lactobacillus helveticus; Lactiplantibacillus pentosus; Limosilactobacillus reuteri; Limosilactobacillus fermentum; Latilactobacillus curvatus; Lactobacillus johnsonii; Leuconostoc citreum; Mammaliicoccus lentus; Lactobacillus crispatus; Lactiplantibacillus paraplantarum; Companilactobacillus paralimentarius; Limosilactobacillus frumenti; Leuconostoc mesenteroides; Oenococcus oeni; Staphylococcus aureus; Lactococcus lactis; Levilactobacillus brevis; Lactiplantibacillus plantarum; Lacticaseibacillus paracasei; Latilactobacillus sakei; Lacticaseibacillus rhamnosus; Enterococcus mundtii; Lentilactobacillus parabuchneri; Furfurilactobacillus rossiae; Streptococcus thermophilus; Lactobacillus acidophilus; Lentilactobacillus buchneri; Weissella confusa; Lactobacillus delbrueckii; Lentilactobacillus hilgardii; Lactobacillus gasseri; Companilactobacillus farciminis; Fructilactobacillus sanfranciscensis; Bifidobacterium; Leuconostoc pseudomesenteroides; Companilactobacillus mindensis; Pediococcus pentosaceus; Enterococcus faecium; Companilactobacillus alimentarius; Lactobacillus amylovorus; Fructilactobacillus fructivorans; Brevibacterium linens; Limosilactobacillus pontis; Enterococcus casseliflavus; Limosilactobacillus panis
Type:
Expression profiling by array
Platform:
GPL5459
9 Samples
Download data: TXT
Series
Accession:
GSE15686
ID:
200015686
17.

RNA validation of LAB 2k v2

(Submitter supplied) To study their metabolic potential in natural ecosystems, we developed a species-independent LAB microarray, containing 2,269 30-mer oligonucleotides, and targeting 406 genes that play a key role in the production of sugar catabolites, bacteriocins, exopolysaccharides, and aromas, in probiotic and biosafety characteristics, and in stress response. Also, genes linked to negative traits such as antibiotic resistance and virulence are represented. more...
Organism:
Staphylococcus aureus; Lactococcus lactis; Lactiplantibacillus plantarum; Lactobacillus gasseri; Lacticaseibacillus paracasei; Companilactobacillus alimentarius; Enterococcus casseliflavus; Furfurilactobacillus rossiae; Pediococcus acidilactici; Pediococcus pentosaceus; Enterococcus faecalis; Enterococcus faecium; Lacticaseibacillus casei; Weissella confusa; Lactobacillus helveticus; Lentilactobacillus hilgardii; Companilactobacillus farciminis; Fructilactobacillus fructivorans; Fructilactobacillus sanfranciscensis; Bifidobacterium; Brevibacterium linens; Limosilactobacillus pontis; Lactobacillus crispatus; Lactiplantibacillus paraplantarum; Limosilactobacillus frumenti; Enterococcus hirae; Lactiplantibacillus pentosus; Lactobacillus amylovorus; Limosilactobacillus fermentum; Mammaliicoccus lentus; Limosilactobacillus panis; Lacticaseibacillus rhamnosus; Enterococcus mundtii; Companilactobacillus paralimentarius; Lentilactobacillus parabuchneri; Leuconostoc mesenteroides; Oenococcus oeni; Streptococcus thermophilus; Lactobacillus acidophilus; Levilactobacillus brevis; Lentilactobacillus buchneri; Lactobacillus delbrueckii; Limosilactobacillus reuteri; Latilactobacillus sakei; Latilactobacillus curvatus; Lactobacillus johnsonii; Leuconostoc citreum; Leuconostoc pseudomesenteroides; Companilactobacillus mindensis
Type:
Expression profiling by array
Platform:
GPL5459
20 Samples
Download data: TXT
Series
Accession:
GSE9140
ID:
200009140
18.

DNA validation of LAB 2k v2

(Submitter supplied) To study their metabolic potential in natural ecosystems, we developed a species-independent LAB microarray, containing 2,269 30-mer oligonucleotides, and targeting 406 genes that play a key role in the production of sugar catabolites, bacteriocins, exopolysaccharides, and aromas, in probiotic and biosafety characteristics, and in stress response. Also, genes linked to negative traits such as antibiotic resistance and virulence are represented. more...
Organism:
Leuconostoc mesenteroides; Oenococcus oeni; Pediococcus acidilactici; Streptococcus thermophilus; Lactobacillus acidophilus; Levilactobacillus brevis; Lentilactobacillus buchneri; Lactobacillus delbrueckii; Lactobacillus helveticus; Limosilactobacillus reuteri; Latilactobacillus curvatus; Lactobacillus johnsonii; Leuconostoc citreum; Leuconostoc pseudomesenteroides; Mammaliicoccus lentus; Lactobacillus crispatus; Lactiplantibacillus paraplantarum; Enterococcus hirae; Lactiplantibacillus pentosus; Lacticaseibacillus paracasei; Latilactobacillus sakei; Lactobacillus amylovorus; Limosilactobacillus fermentum; Limosilactobacillus panis; Lacticaseibacillus rhamnosus; Enterococcus mundtii; Companilactobacillus paralimentarius; Lentilactobacillus parabuchneri; Enterococcus faecalis; Enterococcus faecium; Lacticaseibacillus casei; Weissella confusa; Lentilactobacillus hilgardii; Companilactobacillus farciminis; Fructilactobacillus fructivorans; Fructilactobacillus sanfranciscensis; Bifidobacterium; Brevibacterium linens; Limosilactobacillus pontis; Limosilactobacillus frumenti; Companilactobacillus mindensis; Pediococcus pentosaceus; Staphylococcus aureus; Lactococcus lactis; Lactiplantibacillus plantarum; Lactobacillus gasseri; Companilactobacillus alimentarius; Enterococcus casseliflavus; Furfurilactobacillus rossiae
Type:
Genome variation profiling by array
Platform:
GPL5459
40 Samples
Download data: TXT
Series
Accession:
GSE9082
ID:
200009082
19.

Illumina NovaSeq 6000 (Lacticaseibacillus rhamnosus)

Organism:
Lacticaseibacillus rhamnosus
1 Series
9 Samples
Download data
Platform
Accession:
GPL33752
ID:
100033752
20.

Illumina NovaSeq 6000 (Acinetobacter baumannii; Lacticaseibacillus rhamnosus)

Organism:
Acinetobacter baumannii; Lacticaseibacillus rhamnosus
1 Series
3 Samples
Download data
Platform
Accession:
GPL33555
ID:
100033555
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=txid47715[Organism]|query=1|qty=54|blobid=MCID_6731ad0fb1eff533fd79b65f|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Search details

See more...

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center