U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Meiotic DNA double strand breaks in the yeast Saccaromyces cerevisiae

(Submitter supplied) DNA double-strand breaks (DSBs) initiate meiotic recombination. Past DSB-mapping studies have used rad50S or sae2? mutants, which are defective in break processing, to accumulate DSBs, and report large (= 50 kb) “DSB-hot” regions that are separated by “DSB-cold” domains of similar size. Substantial recombination occurs in some DSB-cold regions, suggesting that DSB patterns are not normal in rad50S or sae2? mutants. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL3737
20 Samples
Download data: GPR
Series
Accession:
GSE8981
ID:
200008981
2.

Genome-wide mapping of meiotic DSB induced by Gal4BD-Spo11

(Submitter supplied) We mapped the binding and DSB sites in a strain expressing the fusion protein Gal4BD-Spo11, as well as the DSB sites in strains expressing endogenous Spo11, pADH1Spo11 and pADH1Gal4BD. Keywords: ChIP-chip
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL4347
14 Samples
Download data: GPR, TXT
Series
Accession:
GSE5884
ID:
200005884
3.

Mapping of meiotic single-stranded DNA reveals double-strand break hotspots near centromeres and telomeres.

(Submitter supplied) Every chromosome requires at least one crossover to be faithfully segregated during meiosis. At least two levels of regulation govern crossover distribution; where the initiating DNA double-strand breaks (DSBs) occur and whether those DSBs are repaired as crossovers. We mapped meiotic DSBs in budding yeast by identifying sites of DSB-associated single-stranded DNA (ssDNA) accumulation. These analyses revealed substantial DSB activity in regions close to centromeres, where crossover formation is largely absent. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome variation profiling by genome tiling array
Platforms:
GPL5991 GPL3499
15 Samples
Download data: TXT
Series
Accession:
GSE9503
ID:
200009503
4.

Meiotic recombination cold spots in chromosomal cohesion sites

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Schizosaccharomyces pombe; Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing; Genome binding/occupancy profiling by genome tiling array
Platforms:
GPL17143 GPL7715
12 Samples
Download data: BAR, BEDGRAPH, CEL, TXT
Series
Accession:
GSE52863
ID:
200052863
5.

Meiotic recombination cold spots in chromosomal cohesion sites [ChIP-Seq]

(Submitter supplied) Meiotic chromosome architecture called “axis-loop structures” and histone modifications have been demonstrated to regulate the Spo11-dependent formation of DNA double-strand breaks (DSBs) that trigger meiotic recombination. Using genome-wide chromatin immunoprecipitation (ChIP) analyses followed by deep sequencing, we compared the genome-wide distribution of the axis protein Rec8 (the kleisin subunit of meiotic cohesin) with that of oligomeric DNA covalently bound to Spo11, indicative of DSB sites. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17143
10 Samples
Download data: BEDGRAPH
Series
Accession:
GSE52862
ID:
200052862
6.

Meiotic recombination cold spots in chromosomal cohesion sites [ChIP-chip]

(Submitter supplied) Meiotic chromosome architecture called “axis-loop structures” and histone modifications have been demonstrated to regulate the Spo11-dependent formation of DNA double-strand breaks (DSBs) that trigger meiotic recombination. Using genome-wide chromatin immunoprecipitation (ChIP) analyses followed by deep sequencing, we compared the genome-wide distribution of the axis protein Rec8 (the kleisin subunit of meiotic cohesin) with that of oligomeric DNA covalently bound to Spo11, indicative of DSB sites. more...
Organism:
Schizosaccharomyces pombe
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL7715
2 Samples
Download data: BAR, CEL, TXT
Series
Accession:
GSE52858
ID:
200052858
7.

Rec8 guides canonical Spo11 distribution along yeast meiotic chromosomes

(Submitter supplied) Spo11-mediated DNA double strand breaks (DSBs) that initiate meiotic recombination are temporally and spatially controlled. The meiotic cohesin Rec8 has been implicated in regulating DSB formation, but little is known about the features of their interplay. To shed light on this point, we investigated the genome-wide localization of Spo11 in budding yeast during early meiosis by chromatin immunoprecipitation using high-density tiling arrays. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by genome tiling array
Platforms:
GPL347 GPL1280
62 Samples
Download data: CEL, EXP
Series
Accession:
GSE8422
ID:
200008422
8.

Numerical and Spatial Patterning of Yeast Meiotic DNA Breaks by Tel1

(Submitter supplied) The Spo11-generated double-strand breaks (DSBs) that initiate meiotic recombination are dangerous lesions that can disrupt genome integrity, so meiotic cells regulate their number, timing, and distribution. Here, we use Spo11-oligonucleotide complexes, a byproduct of DSB formation, to examine the contribution of the DNA damage-responsive kinase Tel1 (ortholog of mammalian ATM) to this regulation in Saccharomyces cerevisiae. more...
Organism:
Saccharomyces cerevisiae
Type:
Other
Platform:
GPL17342
18 Samples
Download data: WIG
Series
Accession:
GSE84696
ID:
200084696
9.

RNA-seq in bas1 and ino4 mutants

(Submitter supplied) Meiotic recombination is initiated by developmentally programmed DNA double-strand breaks (DSBs). In S. cerevisiae, the vast majority of DSBs occur in the nucleosome-depleted regions at gene promoters, where transcription factors (TFs) B296bind. It has been proposed that TF binding can stimulate DSB formation nearby by modulating local chromatin structure. However, a prior study in TF bas1 mutant suggested that the role of TF binding in determining break formation is complex. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13821
6 Samples
Download data: TXT
Series
Accession:
GSE70911
ID:
200070911
10.

Bas1 and Ino4 ChIP-seq

(Submitter supplied) Meiotic recombination is initiated by developmentally programmed DNA double-strand breaks (DSBs). In S. cerevisiae, the vast majority of DSBs occur in the nucleosome-depleted regions at gene promoters, where transcription factors (TFs) bind. It has been proposed that TF binding can stimulate DSB formation nearby by modulating local chromatin structure. However, a prior study in TF bas1 mutant suggested that the role of TF binding in determining break formation is complex. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17342
4 Samples
Download data: TXT
Series
Accession:
GSE67912
ID:
200067912
11.

Spo11-oligo mapping in bas1 and ino4 mutants

(Submitter supplied) Meiotic recombination is initiated by developmentally programmed DNA double-strand breaks (DSBs). In S. cerevisiae, the vast majority of DSBs occur in the nucleosome-depleted regions at gene promoters, where transcription factors (TFs) bind. It has been proposed that TF binding can stimulate DSB formation nearby by modulating local chromatin structure. However, a prior study in TF bas1 mutant suggested that the role of TF binding in determining break formation is complex. more...
Organism:
Saccharomyces cerevisiae
Type:
Other
Platform:
GPL17342
9 Samples
Download data: WIG
Series
Accession:
GSE67910
ID:
200067910
12.

Histone 3 lysine 4 trimethylation (H3K4me3) ChIP in bas1 and ino4 mutants

(Submitter supplied) Meiotic recombination is initiated by developmentally programmed DNA double-strand breaks (DSBs). In S. cerevisiae, the vast majority of DSBs occur in the nucleosome-depleted regions at gene promoters, where transcription factors (TFs) bind. It has been proposed that TF binding can stimulate DSB formation nearby by modulating local chromatin structure. However, a prior study in TF bas1 mutant suggested that the role of TF binding in determining break formation is complex. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17342
12 Samples
Download data: TXT
Series
Accession:
GSE67907
ID:
200067907
13.

Spo11-oligo mapping in zip3 mutants

(Submitter supplied) Meiotic recombination promotes genetic diversification as well as pairing and segregation of homologous chromosomes, but the double-strand breaks (DSBs) that initiate recombination are dangerous lesions that can cause mutation or meiotic failure. How cells control DSBs to balance between beneficial and deleterious outcomes is not well understood. This study tests the hypothesis that DSB control involves a network of intersecting regulatory circuits. more...
Organism:
Saccharomyces cerevisiae
Type:
Other
Platforms:
GPL13821 GPL17342
4 Samples
Download data: WIG
Series
Accession:
GSE48299
ID:
200048299
14.

The Double-Strand Break Landscape of Meiotic Chromosomes Is Shaped by the Paf1 Transcription Elongation Complex in Saccharomyces cerevisiae

(Submitter supplied) Genomic features of DSB re-landscaping in rtf1 mutants. Histone modification is a critical determinant of frequency and location of double-strand breaks (DSBs), which induce recombination during meiosis. The Set1-dependent histone H3K4 and Dot1-dependent H3K79 methylations play an important role in DSB formations in budding yeast. Both methylations are promoted by the RNA polymerase II associated factor 1 (Paf1) complex, Paf1C. more...
Organism:
Saccharomyces cerevisiae
Type:
Other
Platform:
GPL5991
4 Samples
Download data: TXT
Series
Accession:
GSE72827
ID:
200072827
15.

Rec114 ChIP-seq

(Submitter supplied) To segregate accurately during meiosis, homologous chromosomes in most species must recombine. Very small chromosomes would risk missegregation if recombination were randomly distributed, so the double-strand breaks (DSBs) that initiate recombination are not haphazard. How this nonrandomness is controlled is not understood. Here we demonstrate that Saccharomyces cerevisiae integrates multiple, temporally distinct pathways to regulate chromosomal binding of pro-DSB factors Rec114 and Mer2, thereby controlling duration of a DSB-competent state. more...
Organism:
Saccharomyces mikatae; Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL20788 GPL17342
60 Samples
Download data
Series
Accession:
GSE119787
ID:
200119787
16.

Mer2 ChIP-seq

(Submitter supplied) To segregate accurately during meiosis, homologous chromosomes in most species must recombine. Very small chromosomes would risk missegregation if recombination were randomly distributed, so the double-strand breaks (DSBs) that initiate recombination are not haphazard. How this nonrandomness is controlled is not understood. Here we demonstrate that Saccharomyces cerevisiae integrates multiple, temporally distinct pathways to regulate chromosomal binding of pro-DSB factors Rec114 and Mer2, thereby controlling duration of a DSB-competent state. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17342
24 Samples
Download data: TXT
Series
Accession:
GSE119786
ID:
200119786
17.

Spo11-oligo mapping in wild type S. cerevisiae strain

(Submitter supplied) To segregate accurately during meiosis, homologous chromosomes in most species must recombine. Very small chromosomes would risk missegregation if recombination were randomly distributed, so the double-strand breaks (DSBs) that initiate recombination are not haphazard. How this nonrandomness is controlled is not understood. Here we demonstrate that Saccharomyces cerevisiae integrates multiple, temporally distinct pathways to regulate chromosomal binding of pro-DSB factors Rec114 and Mer2, thereby controlling duration of a DSB-competent state. more...
Organism:
Saccharomyces cerevisiae
Type:
Other
Platform:
GPL17342
4 Samples
Download data: TXT
Series
Accession:
GSE119689
ID:
200119689
18.

The conserved SUMO ligase Zip3 protein associates differentially with meiotic double-strand break sites and reveals regional variations in the outcome of meiotic recombination

(Submitter supplied) In meiosis, an excess number of DNA double-strand breaks (DSBs), the initiating DNA lesion, is formed compared to the number of crossovers, one of their repair products that creates the physical links between homologs and allows their correct segregation. It is not known if all DSB hotspots are also crossover hotspots, or if the ratio between DSB and crossovers varies with the chromosomal location. Here, to systematically investigate variation in the DSB/crossover ratio, we have established the genome-wide map of the Zip3 protein binding sites in budding yeast meiosis. We show that Zip3 associates with DSB sites when these are engaged into repair by crossing over, and that Zip3 binding frequency at DSB reflects its tendency to be repaired as a crossover. We further show that the relative amount of Zip3 per DSB varies with the chromosomal location and identify chromosomal features associated with high or low Zip3 per DSB ratio. Among these is the negative regulation by proximity to a centromere and positive by the proximity to axis-associated sequences. This work opens interesting perspectives to understand the role of these extra DSB that are not frequently used for crossover and our findings may extend to mammals that have a large excess of DSB compared to crossovers.
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by array
Platform:
GPL4131
7 Samples
Download data: GPR
Series
Accession:
GSE40563
ID:
200040563
19.

Spo11-oligo mapping in S. cerevisiae strain SK1

(Submitter supplied) Spo11-oligo mapping in S. cerevisiae strain SK1
Organism:
Saccharomyces cerevisiae SK1
Type:
Other
Platform:
GPL28727
11 Samples
Download data: WIG
Series
Accession:
GSE152957
ID:
200152957
20.

Global analysis of the relationship between the binding of Bas1p and meiosis-specific double-strand DNA breaks in yeast

(Submitter supplied) In the yeast Saccharomyces cerevisiae, certain genomic regions have very high levels of meiotic recombination (hot spots). The hot spot activity associated with the HIS4 gene requires the Bas1p transcription factor. To determine whether this relationship between transcription factor binding and hot spot activity is general, we used DNA microarrays to map all genomic Bas1p binding sites and to map the frequency of meiosis-specific double-strand DNA breaks (as an estimate of the recombination activity) of all genes in both wild-type and bas1 strains. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL4414
11 Samples
Download data: GPR
Series
Accession:
GSE6842
ID:
200006842
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=7|qty=5|blobid=MCID_673769a82874ea24c435f219|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Support Center