Clinical Description
To date, approximately 110 individuals with biallelic pathogenic variants in ABCG5 and/or ABCG8 have been reported [Berge et al 2000, Hubacek et al 2001, Lu et al 2001, Heimerl et al 2002, Sehayek et al 2004, Wang et al 2004, Wilund et al 2004, Rees et al 2005, Solcà et al 2005, Su et al 2006, Kratz et al 2007, Mannucci et al 2007, Togo et al 2009, Niu et al 2010, Rios et al 2010, Tsubakio-Yamamoto et al 2010, Keller et al 2011, Wang et al 2011, Chong et al 2012, Horenstein et al 2013, Colima Fausto et al 2016, Rodriguez et al 2016, Tada et al 2016, Bardawil et al 2017, Bastida et al 2017, Buonuomo et al 2017, Jamwal et al 2017, Ono et al 2017, Yagasaki et al 2017, Brinton et al 2018, Fang et al 2018, Kawamura et al 2018, Martin et al 2018, Tada et al 2018, Huang et al 2019, Su et al 2019, Tada et al 2019, Veit et al 2019, Wang et al 2019, Sun et al 2020]. The following description of the phenotypic features associated with this condition is based on these reports.
Presentation. The clinical presentation of sitosterolemia varies from xanthomas and atherosclerosis and its complications to a milder phenotype with few to no specific symptoms and signs [Kidambi & Patel 2008].
Hypercholesterolemia. Individuals with sitosterolemia show an unexpected significant lowering of plasma cholesterol level in response to low-fat or low plant-derived food diet modification or to bile acid sequestrant therapy, and do not respond to statin therapy.
There is evidence of an age-related change in sterol homeostasis in sitosterolemia, where plasma concentrations of cholesterol in children with sitosterolemia can be in the hypercholesterolemia range and decrease to normal cholesterol levels by adulthood [Mymin et al 2018].
Tendon or tuberous xanthomas. Although the tuberous xanthomas are more typically seen in adults, they may appear at any age, even in children. Children may have xanthomas in unusual locations such as the buttocks, heels, elbows, and knees. Xanthomas have been reported in children as young as ages one to two years [Shulman et al 1976, Hubacek et al 2001, Niu et al 2010], four years [Togo et al 2009], and six years [Salen et al 2006, Mannucci et al 2007]. A child age ten years with tendon xanthomas was reported [Solcà et al 2005].
Premature atherosclerosis. Ten individuals with sitosterolemia with early-onset (age 5-33 years) atherosclerosis with or without sudden death have been reported [Miettinen 1980, Kwiterovich et al 1981, Salen et al 1985, Watts & Mitchell 1992, Kolovou et al 1996, Heimerl et al 2002, Katayama et al 2003, Mymin et al 2003, Salen et al 2006, Tsubakio-Yamamoto et al 2010].
Assessment for premature atherosclerosis should include noninvasive imaging to exclude coronary and carotid plaque as well as atherosclerotic manifestations (e.g., heart murmurs and vascular bruits).
Because of the limited number of reports, the incidence of coronary artery disease is not known.
Hematologic abnormality. Hemolytic anemia and/or thrombocytopenia can be the initial presentation [Rees et al 2005, Su et al 2006] or the only clinical feature of the disorder [Wang et al 2011, Zheng et al 2019]. The hemolytic anemia may be associated with low hemoglobin levels of 76 to 109 g/L and the thrombocytopenia has been reported with platelet counts as low as 12 to 82 x 109/L [Wang et al 2014, Zheng et al 2019].
Other findings
Intrafamilial variability has been reported in two consanguineous families:
In one family, phenotypic variablilty was seen in three affected sibs and one affected first cousin with the same genotype [
Wang et al 2004]. One child had abdominal pain, anemia, xanthomas, and early cardiac death; the others had high plasma concentrations of cholesterol and plant sterols but no other symptoms.
In another family the mother and brother of the proband were homozygous for the same nucleotide change in
ABCG5. All had increased concentrations of plasma sitosterol; however, only the proband (age 6 years) had xanthomas. The mother and brother, who had no evidence of xanthomas, had much lower cholesterol concentrations [
Mannucci et al 2007].
Prevalence
To date, about 110 individuals with molecularly confirmed sitosterolemia have been reported worldwide [Tada et al 2018].
Because the usual clinical test for plasma concentration of cholesterol does not measure plant sterols, sitosterolemia is likely to be underdiagnosed. In a population-based study, the data suggest a much higher prevalence than that indicated by the small number of known cases [Wilund et al 2004]; these researchers identified one individual with sitosterolemia out of 2542 persons in whom plasma concentration of plant sterols was analyzed, data that support a prevalence of 1/384 to 1/48,076 (95% confidence interval).
Sitosterolemia has been described in persons of Hutterite, Amish, Japanese, and Chinese ancestry as well as in other populations [Lu et al 2001]. Populations that show a high prevalence include:
A founder effect is evident in certain populations [Lu et al 2001]:
Northern Europeans / individuals of northern European ancestry more frequently have pathogenic variants in ABCG8.
Chinese, Japanese, and Indian individuals tend to have pathogenic variants in ABCG5.