Clinical Description
Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is characterized by variable clinical presentation and age of onset ranging from the neonatal period to adulthood. Those with neonatal onset are normal for the first 24-48 hours, followed by onset of symptoms related to hyperammonemia (poor feeding, vomiting, lethargy, low temperature, rapid breathing). Those with later onset may present with chronic neurocognitive deficits and/or unexplained seizures, spasticity, acute encephalopathy secondary to hyperammonemic crisis, or chronic liver dysfunction. Neurologic findings and cognitive abilities can continue to deteriorate despite early metabolic control that prevents hyperammonemia.
Unless otherwise indicated, the data used in this chapter are from a total of 122 individuals with HHH syndrome: Martinelli et al 2015 (n=111), six subsequent case reports [Qadri et al 2016, Guan et al 2017, Ono et al 2018, Silfverberg et al 2018, Ho et al 2019, Wild et al 2019] and three unpublished affected individuals [Author, personal observation].
Table 3.
Selected Clinical Findings in Hyperornithinemia-Hyperammonemia-Homocitrullinuria (HHH) Syndrome
View in own window
| Findings | % of Persons w/Feature |
---|
Findings that resolve quickly w/protein-restricted diet
| Lethargy | 62% (52/84) |
Significant ↑ of liver enzymes AST & ALT | 52% (44/84) |
Coagulopathy | 49% (34/69) |
Coma | 33% (33/101) |
Long-term neurodevelopmental outcome
| Pyramidal signs | 75% (71/95) |
Intellectual disability | 66% (63/96) |
Myoclonic seizures | 34% (31/91) |
The overall survival rate in individuals with HHH syndrome is 94% (109/116). Of the 21% (13/62) of individuals with HHH syndrome who manifested in the neonatal period, the mortality rate is 15% (2/13). Treatment with a protein-restricted diet resolves hepatic dysfunction (elevated transaminases and coagulopathy). Since hyperammonemia in HHH syndrome responds quickly to treatment, early diagnosis leads to an overall improved long-term outcome regardless of the age of onset.
The long-term neurodevelopmental outcome usually (but not always) correlates with the severity and duration of the hyperammonemic insult.
Pyramidal tract findings and intellectual disability, which range from mild to severe, are generally evident by childhood since almost 70% of HHH syndrome manifests in infancy and childhood [Martinelli et al 2015]. While treatment with a protein-restricted diet prevents postprandial and acute hyperammonemia, outcomes vary. For example, individuals with HHH syndrome with limited clinical manifestations throughout life have been reported [Filosto et al 2013; Silfverberg et al 2018; L Merritt, MD & E Font-Montgomery, MD, personal communication (see Outcomes and Presentation; pdf). Conversely, three of four adults with HHH syndrome who maintained normal levels of plasma ammonia for 11 to 38 years exhibited progressive neurologic and cognitive deterioration with serious outcomes [Kim et al 2012].
Neonatal diagnosis (birth – 1 month). About 8% (9/116) of affected individuals were diagnosed during the neonatal period, usually following an uncomplicated pregnancy and delivery. The clinical course is indistinguishable from that of other neonatal-onset urea cycle disorders: the infant is asymptomatic for the first 24-48 hours and, thereafter, has episodes of poor feeding, vomiting, lethargy, low temperature, and/or rapid breathing related to hyperammonemia (see Table 1). If left untreated seizures, coma, and even death may ensue. Hepatic dysfunction and coagulopathy in the neonatal period are common [Martinelli et al 2015, Wild et al 2019].
Given the small number of case studies published to date, little is known about the long-term outcome of individuals with neonatal onset of HHH syndrome. One child died from hyperammonemic encephalopathy at birth and another at age two months. Survivors ranged in age from one to 23 years – one demonstrated normal development at age six years, four had progressive pyramidal signs, and one with significant neuromotor impairment underwent liver transplantation at age seven years. In eight survivors with neonatal onset, cognitive abilities in four ranged from normal to mild deficiency, three exhibited severe cognitive impairment, and one was a recently reported premature infant [Martinelli et al 2015, Wild et al 2019].
Click here (pdf) for more details about outcomes in the neonatal-onset cases described above.
Infantile (>1 month – 1 year) age at diagnosis. Approximately 10% (12/116) of individuals with HHH syndrome present in this timeframe. Highly variable manifestations in infancy can include hypotonia, lethargy, failure to thrive, seizures, psychomotor delay, hepatomegaly, hepatic dysfunction (coagulopathy and elevated transaminases), hyperammonemia, feeding difficulties, and recurrent vomiting. Some children come to medical attention only after experiencing environmental stressors, most commonly infection.
Unique case studies include an affected individual who presented with fulminant hepatic failure and a recent example of the clinical progression of symptoms in an undiagnosed infant.
Click here (pdf) for more details about the presentation of infantile-onset HHHS described above.
Childhood (>1 year to 12 years) presentation accounts for almost half (56/116) of all HHH syndrome. Children in this group come to medical attention either for findings related to mild hyperammonemia with or without liver dysfunction or for evaluation of developmental and speech delay, dysarthria, intellectual disability, learning disabilities, hyperactivity, recurring vomiting, academic difficulties, spasticity, ataxia, and/or unexplained seizure activity. Environmental triggers (i.e., surgery, infection, medication) may also induce manifestations in previously healthy children.
A salient characteristic of affected individuals diagnosed in childhood who have the same SLC25A15 pathogenic variants is marked phenotypic variability.
Click here (pdf) for more details about outcomes in childhood-onset HHHS.
Liver dysfunction, a predominant feature at time of diagnosis, generally manifests as mild coagulopathy and elevated liver enzymes (AST and ALT) with or without hyperammonemia. In a few reports acute liver failure prompted consideration of liver transplantation [Fecarotta et al 2006, Mhanni et al 2008]. However, the liver dysfunction that may occur during the initial clinical presentation does not appear to cause long-term complications. Once the hyperammonemia is treated in a standard manner (see Treatment of Manifestations), the liver dysfunction subsides [Martinelli et al 2015, Ono et al 2018].
Despite early detection and adequate metabolic control (i.e., absence of hyperammonemia), some individuals with HHH syndrome continue to worsen neurologically with pyramidal tract involvement and cognitive decline [Camacho et al 2006, Debray et al 2008, Tessa et al 2009, Martinelli et al 2015]. Subclinical hyperammonemia is thought to be a major factor in neurocognitive decline, but not in the cause or progression of pyramidal syndrome. In some individuals with early-childhood onset, gait abnormalities and spasticity are the predominant findings.
The Urea Cycle Disorders Consortium reported developmental quotients (DQ) in four preschool children (age 4-5 years) with HHH syndrome: two were in the normal range and two were <71. Two also exhibited anxiety and acting out behaviors [Waisbren et al 2016].
Adolescence/adulthood (>12 years) accounts for about one third (39/116) of persons with HHH syndrome. After infancy, these individuals quickly learn to self-restrict their protein intake to avoid the malaise and vomiting that accompanies protein-rich meals. The milder form of the disease and self-adherence to a low-protein diet allow these individuals to lead a relatively symptom-free life and remain undetected until they inadvertently overwhelm their compromised ability to detoxify harmful elevations of plasma ammonia. Ammonia overload may result from catabolic events (i.e., surgery, infection, prolonged fasting, pregnancy, internal bleeding), deviation from a protein-restricted diet, or certain medications (e.g., valproate, steroids).
Individuals diagnosed in adolescence/adulthood may present with recurrent encephalopathy secondary to hyperammonemia (lethargy, disorientation, episodic confusion, unexplained seizures), intellectual disabilities, recurrent vomiting, chronic behavioral problems, cerebellar signs (dizziness, loss of balance, poor coordination, abnormal gait/posture), and pyramidal tract dysfunction (inability to perform fine movements, positive Babinski reflex, muscle weakness, ataxia, hyperreflexia, and spasticity).
Click here (pdf) for more details about outcomes in adolescent/adult-onset HHHS.
Cognitive development in persons with HHH syndrome ranges from normal (34%) to severe impairment (34%), with the majority having normal to mild neurocognitive deficit (59%). In some reports, affected individuals have significant neurologic findings such as spasticity and ataxia without cognitive impairment [Martinelli et al 2015]. Of note, pyramidal signs of the lower extremities (hyperreflexia, clonus, tip-toe gait, and/or spastic ataxia) may develop years after the initial diagnosis [Salvi et al 2001b, Debray et al 2008, Tessa et al 2009].
The Urea Cycle Disorder Consortium reported findings of two successive neurocognitive evaluations given to one adult with HHH syndrome: full scale IQ was 100 and 84 at ages 21 years and 26 years, respectively; performance was significantly diminished across all neuropsychological tests. No cognitive or behavioral issues were noted [Waisbren et al 2016].
Additional clinical biochemical abnormalities in HHHS can include the following:
Mildly elevated plasma glutamine concentration (1.5- to 2-fold the upper limits of control values)
Plasma lysine can range from normal to moderately decreased
Increased urinary excretion of:
Statistically significant elevation of AFP and pronounced liver ultrasound abnormalities at follow up [
Ranucci et al 2019]