NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE35667 Query DataSets for GSE35667
Status Public on Jun 15, 2012
Title Separation of DNA replication from the assembly of break-competent meiotic chromosomes
Organism Saccharomyces cerevisiae
Experiment type Genome binding/occupancy profiling by genome tiling array
Genome variation profiling by genome tiling array
Other
Summary The meiotic cell division reduces the chromosome number from diploid to haploid to form gametes for sexual reproduction. Although much progress has been made in understanding meiotic recombination and the two meiotic divisions, the processes leading up to recombination, including the prolonged pre-meiotic S phase (meiS) and the assembly of meiotic chromosome axes, remain poorly defined. We have used genome-wide approaches in Saccharomyces cerevisiae to measure the kinetics of pre-meiotic DNA replication, and to investigate the interdependencies between replication and axis formation. We found that replication initiation was delayed for a large number of origins in meiS compared to mitosis, and that meiotic cells were far more sensitive to replication inhibition, most likely due to the starvation conditions required for meiotic induction. Moreover, replication initiation was delayed even in the absence of chromosome axes, indicating replication timing is independent of the process of axis assembly. Finally, we found that cells were able to install axis components and initiate recombination on unreplicated DNA. Thus, although pre-meiotic DNA replication and meiotic chromosome axis formation occur concurrently, they are not directly coupled. The functional separation of these processes reveals a modular method of building meiotic chromosomes, and predicts that any crosstalk between these modules must occur through superimposed regulatory mechanisms.

This SuperSeries is composed of the SubSeries listed below.
 
Overall design Refer to individual Series.
Multiple studies of meiotic chromosomes were undertaken. To study DNA replication, the locations of replicative helicase (Mcm2-7) were mapped in pre-meiotic and pre-mitotic cells, and DNA replication profiles were created for pre-meiotic S (meiS) and pre-mitotic S (mitS) phases. Early origins were mapped in hydroxyurea for wild-type cells in mitS + 200mM HU, and meiS +20mM HU for wild-type, sml1, rec8 and spo11 deletion cells. Rec8, Hop1 and Red1 binding to meiotic chromosomes was evaluated using ChIP-chip in wild-type cells with and without 20 mM HU, and in cdc6-mn and clb5 clb6 delete cells. Finally, meiotic DNA double-strand breaks (DSBs) were mapped in cdc6-mn dmc1 delete cells by measuring the ssDNA that accumulates at DSB hotspots.
 
Contributor(s) Blitzblau HG, Chan CS, Hochwagen A, Bell SP
Citation(s) 22615576
Submission date Feb 09, 2012
Last update date Jul 18, 2017
Contact name Stephen P Bell
E-mail(s) spbell@mit.edu
Phone +1-617-253-2054
Organization name MIT
Department Biology
Street address 68-630, 77 Massachusetts Ave.
City Cambridge
State/province MA
ZIP/Postal code 02139
Country USA
 
Platforms (2)
GPL3499 Agilent Yeast Whole Genome ChIP-on-chip Microarray
GPL5991 Agilent-015239 Yeast Whole Genome ChIP-on-chip Microarray (G4493A)
Samples (54)
GSM873116 pre-mitotic Mcm2-7 ChIP replicate 1
GSM873117 pre-mitotic Mcm2-7 ChIP replicate 2
GSM873118 pre-mitotic Mcm2-7 ChIP replicate 3
This SuperSeries is composed of the following SubSeries:
GSE35658 Chromatin IP for Mcm2-7, Rec8, Hop1 and Red1
GSE35662 S phase and HU profiles in wild-type and mutant cells
GSE35666 DSB formation in replication compromised cells
Relations
BioProject PRJNA152437

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE35667_RAW.tar 634.8 Mb (http)(custom) TAR (of TXT)

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap