show Abstracthide AbstractThe centromere is a defining feature of eukaryotic chromosomes and is essential for the segregation of chromosomes during cell division. Centromeres are universally marked by the histone variant cenH3 and are restricted to specialized chromatin that most commonly localized to a single position along the chromosome. However, the DNA on which centromeric nucleosomes assemble is not conserved and varies greatly in size and composition. It ranges from genetically defined point centromeres that assemble a single cenH3-containing nucleosome to epigenetically defined regional centromeres embedded in megabases of tandemly repeated DNA to holocentromeres that extend along the length of the entire chromosomes. The organization of regional and holocentric centromeres has so far been elusive, as the precise locations of cenH3-containing sequences could not be determined. Our results show that the point centromere is the basic unit of holocentromeres and provide a basis for understanding how centromeric chromatin is maintained. Overall design: We use high-resolution mapping of cenH3-associated DNA to show that Caenorhabditids elegans holocentromeres are organized as dispersed but discretely localized point centromeres.