show Abstracthide AbstractAccurate annotations of genes and their transcripts is a foundation of genomics, but no annotation technique presently combines throughput and accuracy. As a result, the GENCODE reference collection of long noncoding RNAs remains far from complete: many are fragmentary, while thousands more remain uncatalogued. To accelerate lncRNA annotation, we have developed RNA Capture Long Seq (CLS), combining targeted RNA capture with third generation long-read sequencing. We present an experimental re-annotation of the entire GENCODE intergenic lncRNA populations in matched human and mouse tissues. CLS approximately doubles the complexity of targeted loci, both in terms of validated splice junctions and transcript models. Through its identification of full-length transcript models, CLS allows the first definitive measurement of promoter features, gene structure and protein-coding potential of lncRNAs. Thus CLS removes a longstanding bottleneck of transcriptome annotation, generating manual-quality full-length transcript models at high-throughput scales. Overall design: RNA Capture Long-Seq study of 6 tissue samples in human and mouse