Spinal Muscular Atrophy, X-Linked Infantile

Review
In: GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993.
[updated ].

Excerpt

Clinical characteristics: X-linked infantile spinal muscular atrophy (XL-SMA) is characterized by congenital hypotonia, areflexia, and evidence of degeneration and loss of anterior horn cells (i.e., lower motor neurons) in the spinal cord and brain stem. Often congenital contractures and/or fractures are present. Intellect is normal. Life span is significantly shortened because of progressive ventilatory insufficiency resulting from chest muscle involvement.

Diagnosis/testing: The diagnosis of X-linked infantile spinal muscular atrophy is established in a male proband with suggestive clinical features and a hemizygous pathogenic variant in UBA1 identified by molecular genetic testing.

Management: Treatment of manifestations: Assure adequate caloric intake by caloric supplementation and/or gastrostomy feedings; manage constipation with diet or medication; provide rigorous airway clearance techniques, secretion management, and, ideally, noninvasive ventilatory support, although tracheostomy with permanent mechanical ventilation can be considered; discuss "do not attempt to resuscitate" status with the family before respiratory failure occurs. Orthopedic consultation and physical and occupational therapy to manage contractures and progressive scoliosis. Standard treatment for gastroesophageal reflux disease.

Surveillance: Affected children should be followed at least monthly until the severity and disease course are more clearly delineated. Routine evaluations by a multidisciplinary team, including neurology, pulmonology, orthopedics, physical and occupational therapy, nutrition, and gastroenterology, as needed. Measurement of growth parameters, neurologic evaluation, nutrition/feeding assessment, evaluation of respiratory status, and physical examination for kyphosis/scoliosis at each visit.

Genetic counseling: By definition, XL-SMA is inherited in an X-linked manner. Heterozygous females have a 50% chance of transmitting the pathogenic variant with each pregnancy. Males who inherit the pathogenic variant will be affected; females who inherit the pathogenic variant will be heterozygotes and will usually not be affected. Once the UBA1 pathogenic variant has been identified in an affected family member, carrier testing for at risk female relatives and prenatal and preimplantation genetic testing are possible.

Publication types

  • Review