Feasibility Study of Ferumoxtyol for Contrast-enhanced MRI of Retroplacental Clear Space Disruption in Placenta Accreta Spectrum (PAS)

medRxiv [Preprint]. 2023 Mar 24:2023.03.20.23287436. doi: 10.1101/2023.03.20.23287436.

Abstract

Introduction: Placenta accreta spectrum (PAS) occurs when the placenta is pathologically adherent to the myometrium. An intact retroplacental clear space (RPCS) is a marker of normal placentation, but visualization with conventional imaging techniques is a challenge. In this study, we investigate use of an FDA-approved iron oxide nanoparticle, ferumoxytol, for contrast-enhanced magnetic resonance imaging of the RPCS in mouse models of normal pregnancy and PAS. We then demonstrate the translational potential of this technique in human patients presenting with severe PAS (FIGO Grade 3C), moderate PAS (FIGO Grade 1), and no PAS.

Methods: A T1-weighted gradient recalled echo (GRE) sequence was used to determine the optimal dose of ferumoxytol in pregnant mice. Pregnant Gab3 -/- mice, which demonstrate placental invasion, were then imaged at day 16 of gestation alongside wild-type (WT) pregnant mice which do not demonstrate invasion. Signal-to-noise ratio (SNR) was computed for placenta and RPCS for all fetoplacental units (FPUs) with ferumoxytol-enhanced magnetic resonance imaging (Fe-MRI) and used for the determination of contrast-to-noise ratio (CNR). Fe-MRI was also performed in 3 pregnant subjects using standard T1 and T2 weighted sequences and a 3D magnetic resonance angiography (MRA) sequence. RPCS volume and relative signal were calculated in all three subjects.

Results: Ferumoxytol administered at 5 mg/kg produced strong T1 shortening in blood and led to strong placental enhancement in Fe-MRI images. Gab3 -/- mice demonstrated loss of hypointense region characteristic of the RPCS relative to WT mice in T1w Fe-MRI. CNR between RPCS and placenta was lower in FPUs of Gab3 -/- mice compared to WT mice, indicating higher degrees of vascularization and interruptions throughout the space. In human patients, Fe-MRI at a dose of 5 mg/kg enabled high uteroplacental vasculature signal and quantification of the volume and signal profile in severe and moderate invasion of the placenta relative to a non-PAS case.

Discussion: Ferumoxytol, an FDA-approved iron oxide nanoparticle formulation, enabled visualization of abnormal vascularization and loss of uteroplacental interface in a murine model of PAS. The potential of this non-invasive visualization technique was then further demonstrated in human subjects. Diagnosis of placental invasion using Fe-MRI may provide a sensitive method for clinical detection of PAS.

Publication types

  • Preprint