Structural determinants for protein unfolding and translocation by the Hsp104 protein disaggregase

Biosci Rep. 2017 Dec 22;37(6):BSR20171399. doi: 10.1042/BSR20171399. Print 2017 Dec 22.

Abstract

The ring-forming Hsp104 ATPase cooperates with Hsp70 and Hsp40 molecular chaperones to rescue stress-damaged proteins from both amorphous and amyloid-forming aggregates. The ability to do so relies upon pore loops present in the first ATP-binding domain (AAA-1; loop-1 and loop-2 ) and in the second ATP-binding domain (AAA-2; loop-3) of Hsp104, which face the protein translocating channel and couple ATP-driven changes in pore loop conformation to substrate translocation. A hallmark of loop-1 and loop-3 is an invariable and mutational sensitive aromatic amino acid (Tyr257 and Tyr662) involved in substrate binding. However, the role of conserved aliphatic residues (Lys256, Lys258, and Val663) flanking the pore loop tyrosines, and the function of loop-2 in protein disaggregation has not been investigated. Here we present the crystal structure of an N-terminal fragment of Saccharomyces cerevisiae Hsp104 exhibiting molecular interactions involving both AAA-1 pore loops, which resemble contacts with bound substrate. Corroborated by biochemical experiments and functional studies in yeast, we show that aliphatic residues flanking Tyr257 and Tyr662 are equally important for substrate interaction, and abolish Hsp104 function when mutated to glycine. Unexpectedly, we find that loop-2 is sensitive to aspartate substitutions that impair Hsp104 function and abolish protein disaggregation when loop-2 is replaced by four aspartate residues. Our observations suggest that Hsp104 pore loops have non-overlapping functions in protein disaggregation and together coordinate substrate binding, unfolding, and translocation through the Hsp104 hexamer.

Keywords: AAA proteins; Saccharomyces cerevisiae; crystallography; heat shock proteins; molecular chaperones; site-directed mutagenesis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • HSP40 Heat-Shock Proteins / chemistry
  • HSP40 Heat-Shock Proteins / genetics
  • HSP70 Heat-Shock Proteins / chemistry
  • HSP70 Heat-Shock Proteins / genetics
  • Heat-Shock Proteins / chemistry
  • Heat-Shock Proteins / genetics*
  • Molecular Chaperones / chemistry
  • Molecular Chaperones / genetics*
  • Protein Aggregates / genetics*
  • Protein Binding
  • Protein Multimerization
  • Protein Transport / genetics
  • Protein Unfolding*
  • Saccharomyces cerevisiae / chemistry
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae Proteins / chemistry
  • Saccharomyces cerevisiae Proteins / genetics*

Substances

  • HSP40 Heat-Shock Proteins
  • HSP70 Heat-Shock Proteins
  • Heat-Shock Proteins
  • Molecular Chaperones
  • Protein Aggregates
  • Saccharomyces cerevisiae Proteins
  • HsP104 protein, S cerevisiae