Imaging biomarkers predict response to anti-HER2 (ErbB2) therapy in preclinical models of breast cancer

Clin Cancer Res. 2009 Jul 15;15(14):4712-21. doi: 10.1158/1078-0432.CCR-08-2635. Epub 2009 Jul 7.

Abstract

Purpose: To evaluate noninvasive imaging methods as predictive biomarkers of response to trastuzumab in mouse models of HER2-overexpressing breast cancer. The correlation between tumor regression and molecular imaging of apoptosis, glucose metabolism, and cellular proliferation was evaluated longitudinally in responding and nonresponding tumor-bearing cohorts.

Experimental design: Mammary tumors from MMTV/HER2 transgenic female mice were transplanted into syngeneic female mice. BT474 human breast carcinoma cell line xenografts were grown in athymic nude mice. Tumor cell apoptosis (NIR700-Annexin V accumulation), glucose metabolism [2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography ([18F]FDG-PET)], and proliferation [3'-[18F]fluoro-3'-deoxythymidine-PET ([18F]FLT-PET)] were evaluated throughout a biweekly trastuzumab regimen. Imaging metrics were validated by direct measurement of tumor size and immunohistochemical analysis of cleaved caspase-3, phosphorylated AKT, and Ki67.

Results: NIR700-Annexin V accumulated significantly in trastuzumab-treated MMTV/HER2 and BT474 tumors that ultimately regressed but not in nonresponding or vehicle-treated tumors. Uptake of [18F]FDG was not affected by trastuzumab treatment in MMTV/HER2 or BT474 tumors. [18F]FLT-PET imaging predicted trastuzumab response in BT474 tumors but not in MMTV/HER2 tumors, which exhibited modest uptake of [18F]FLT. Close agreement was observed between imaging metrics and immunohistochemical analysis.

Conclusions: Molecular imaging of apoptosis accurately predicts trastuzumab-induced regression of HER2+ tumors and may warrant clinical exploration to predict early response to neoadjuvant trastuzumab. Trastuzumab does not seem to alter glucose metabolism substantially enough to afford [18F]FDG-PET significant predictive value in this setting. Although promising in one preclinical model, further studies are required to determine the overall value of [18F]FLT-PET as a biomarker of response to trastuzumab in HER2+ breast cancer.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibodies, Monoclonal / pharmacology*
  • Antibodies, Monoclonal, Humanized
  • Antineoplastic Agents / pharmacology
  • Apoptosis / drug effects
  • Breast Neoplasms / drug therapy*
  • Breast Neoplasms / metabolism
  • Breast Neoplasms / pathology
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Diagnostic Imaging / methods*
  • Dideoxynucleosides
  • Female
  • Fluorine Radioisotopes
  • Fluorodeoxyglucose F18
  • Glucose / metabolism
  • Humans
  • Mammary Neoplasms, Experimental / drug therapy
  • Mammary Neoplasms, Experimental / metabolism
  • Mammary Neoplasms, Experimental / pathology
  • Mice
  • Mice, Nude
  • Mice, Transgenic
  • Positron-Emission Tomography
  • Prognosis
  • Receptor, ErbB-2 / antagonists & inhibitors*
  • Receptor, ErbB-2 / genetics
  • Receptor, ErbB-2 / immunology
  • Reproducibility of Results
  • Trastuzumab
  • Xenograft Model Antitumor Assays*

Substances

  • Antibodies, Monoclonal
  • Antibodies, Monoclonal, Humanized
  • Antineoplastic Agents
  • Dideoxynucleosides
  • Fluorine Radioisotopes
  • Fluorodeoxyglucose F18
  • Receptor, ErbB-2
  • Glucose
  • Trastuzumab