Generation and validation of a mouse line with a floxed SRC-3/AIB1 allele for conditional knockout

Int J Biol Sci. 2008 Jul 23;4(4):202-7. doi: 10.7150/ijbs.4.202.

Abstract

The steroid receptor coactivator-3 (SRC-3), also known as AIB1, ACTR, p/CIP and NCOA3, is a transcriptional coactivator for nuclear receptors and certain other transcription factors. SRC-3 is widely expressed and plays important physiological functions and pathogenic roles in breast and prostate cancers. SRC-3 knockout (SRC-3(-/-)) mice display genetic background-dependent embryonic lethality and multiple local and systemic abnormalities. Since both the partial lethality and the systemic effects caused by global SRC-3 knockout interfere with downstream investigation of tissue-specific function of SRC-3, we have generated floxed SRC-3 (SRC-3(f/f)) mice with conditional alleles carrying loxP sites in introns 10 and 12 by a gene-targeting strategy. The two SRC-3(f/f) mouse lines (A and B) are indistinguishable from wild type mice. To test if deletion of the floxed exons 11 and 12 for SRC-3 nuclear receptor interaction domains and disruption of its downstream sequence for transcriptional activation domains would inactivate SRC-3 function, SRC-3(f/f) mice were crossbred with EIIa-Cre mice to generate SRC-3(d/d) mice with germ line deletion of the floxed SRC-3 gene. Both lines of SRC-3(d/d) mice exhibited growth retardation and low IGF-I levels, which was similar to that observed in SRC-3(-/-) mice. The line A SRC-3(d/d) mice showed normal viability, while line B SRC-3(d/d) mice showed partial lethality similar to SRC-3-/- mice, probably due to variable distributions of genetic background during breeding. These results demonstrate that the floxed SRC-3 mouse lines have been successfully established. These mice will be useful for investigating the cell type- and developmental stage-specific functions of SRC-3.

Keywords: AIB1 Allele; SRC-3; knockout mice.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Alleles
  • Animals
  • Body Weight / genetics
  • Body Weight / physiology
  • Embryonic Stem Cells / cytology
  • Embryonic Stem Cells / metabolism
  • Female
  • Genotype
  • Germ-Line Mutation / genetics
  • Histone Acetyltransferases / genetics*
  • Histone Acetyltransferases / metabolism
  • Histone Acetyltransferases / physiology*
  • Insulin-Like Growth Factor I / metabolism
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Nuclear Receptor Coactivator 3
  • Polymerase Chain Reaction
  • Trans-Activators / genetics*
  • Trans-Activators / metabolism
  • Trans-Activators / physiology*

Substances

  • Trans-Activators
  • Insulin-Like Growth Factor I
  • Histone Acetyltransferases
  • Ncoa3 protein, mouse
  • Nuclear Receptor Coactivator 3