Perivascular nitric oxide and superoxide in neonatal cerebral hypoxia-ischemia

Am J Physiol Heart Circ Physiol. 2008 Oct;295(4):H1809-14. doi: 10.1152/ajpheart.00301.2007. Epub 2008 Aug 1.

Abstract

Decreased cerebral blood flow (CBF) has been observed following the resuscitation from neonatal hypoxic-ischemic injury, but its mechanism is not known. We address the hypothesis that reduced CBF is due to a change in nitric oxide (NO) and superoxide anion O(2)(-) balance secondary to endothelial NO synthase (eNOS) uncoupling with vascular injury. Wistar rats (7 day old) were subjected to cerebral hypoxia-ischemia by unilateral carotid occlusion under isoflurane anesthesia followed by hypoxia with hyperoxic or normoxic resuscitation. Expired CO(2) was determined during the period of hyperoxic or normoxic resuscitation. Laser-Doppler flowmetry was used with isoflurane anesthesia to monitor CBF, and cerebral perivascular NO and O(2)(-) were determined using fluorescent dyes with fluorescence microscopy. The effect of tetrahydrobiopterin supplementation on each of these measurements and the effect of apocynin and N(omega)-nitro-L-arginine methyl ester (L-NAME) administration on NO and O(2)(-) were determined. As a result, CBF in the ischemic cortex declined following the onset of resuscitation with 100% O(2) (hyperoxic resuscitation) but not room air (normoxic resuscitation). Expired CO(2) was decreased at the onset of resuscitation, but recovery was the same in normoxic and hyperoxic resuscitated groups. Perivascular NO-induced fluorescence intensity declined, and O(2)(-)-induced fluorescence increased in the ischemic cortex after hyperoxic resuscitation up to 24 h postischemia. L-NAME treatment reduced O(2)(-) relative to the nonischemic cortex. Apocynin treatment increased NO and reduced O(2)(-) relative to the nonischemic cortex. The administration of tetrahydrobiopterin following the injury increased perivascular NO, reduced perivascular O(2)(-), and increased CBF during hyperoxic resuscitation. These results demonstrate that reduced CBF follows hyperoxic resuscitation but not normoxic resuscitation after neonatal hypoxic-ischemic injury, accompanied by a reduction in perivascular production of NO and an increase in O(2)(-). The finding that tetrahydrobiopterin, apocynin, and L-NAME normalized radical production suggests that the uncoupling of perivascular NOS, probably eNOS, due to acquired relative tetrahydrobiopterin deficiency occurs after neonatal hypoxic-ischemic brain injury. It appears that both NOS uncoupling and the activation of NADPH oxidase participate in the changes of reactive oxygen concentrations seen in cerebral hypoxic-ischemic injury.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Acetophenones / pharmacology
  • Animals
  • Animals, Newborn
  • Biopterins / analogs & derivatives
  • Biopterins / pharmacology
  • Carbon Dioxide / metabolism
  • Cerebral Cortex / blood supply*
  • Cerebrovascular Circulation* / drug effects
  • Disease Models, Animal
  • Endothelium, Vascular / drug effects
  • Endothelium, Vascular / metabolism*
  • Endothelium, Vascular / physiopathology
  • Enzyme Inhibitors / pharmacology
  • Exhalation
  • Hypoxia-Ischemia, Brain / metabolism*
  • Hypoxia-Ischemia, Brain / pathology
  • Hypoxia-Ischemia, Brain / physiopathology
  • Hypoxia-Ischemia, Brain / therapy
  • Laser-Doppler Flowmetry
  • Microscopy, Fluorescence
  • NADPH Oxidases / antagonists & inhibitors
  • NADPH Oxidases / metabolism
  • NG-Nitroarginine Methyl Ester / pharmacology
  • Nitric Oxide / metabolism*
  • Nitric Oxide Synthase Type II / antagonists & inhibitors
  • Nitric Oxide Synthase Type II / metabolism
  • Nitric Oxide Synthase Type III / antagonists & inhibitors
  • Nitric Oxide Synthase Type III / metabolism
  • Oxygen Inhalation Therapy* / adverse effects
  • Rats
  • Rats, Wistar
  • Resuscitation* / adverse effects
  • Superoxides / metabolism*
  • Time Factors

Substances

  • Acetophenones
  • Enzyme Inhibitors
  • Superoxides
  • Carbon Dioxide
  • Biopterins
  • Nitric Oxide
  • acetovanillone
  • Nitric Oxide Synthase Type II
  • Nitric Oxide Synthase Type III
  • Nos3 protein, rat
  • NADPH Oxidases
  • sapropterin
  • NG-Nitroarginine Methyl Ester