Determining protein topology from skeletons of secondary structures

J Mol Biol. 2005 Jul 15;350(3):571-86. doi: 10.1016/j.jmb.2005.04.064.

Abstract

We report a novel computational procedure for determining protein native topology, or fold, by defining loop connectivity based on skeletons of secondary structures that can usually be obtained from low to intermediate-resolution density maps. The procedure primarily involves a knowledge-based geometry filter followed by an energetics-based evaluation. It was tested on a large set of skeletons covering a wide range of protein architecture, including one modeled from an experimentally determined 7.6A cryo-electron microscopy (cryo-EM) density map. The results showed that the new procedure could effectively deduce protein folds without high-resolution structural data, a feature that could also be used to recognize native fold in structure prediction and to interpret data in fields like structure genomics. Most importantly, in the energetics-based evaluation, it was revealed that, despite the inevitable errors in the artificially constructed structures and limited accuracy of knowledge-based potential functions, the average energy of an ensemble of structures with slightly different configurations around the native skeleton is a much more robust parameter for marking native topology than the energy of individual structures in the ensemble. This result implies that, among all the possible topology candidates for a given skeleton, evolution has selected the native topology as the one that can accommodate the largest structural variations, not the one rigidly trapped in a deep, but narrow, conformational energy well.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Algorithms
  • Amino Acid Motifs
  • Cryoelectron Microscopy
  • Databases, Protein
  • Models, Molecular
  • Models, Statistical
  • Models, Theoretical
  • Monte Carlo Method
  • Protein Conformation
  • Protein Structure, Secondary
  • Proteins / chemistry*
  • Proteomics / methods*

Substances

  • Proteins