Bacterial Dissemination to the Brain in Sepsis

Am J Respir Crit Care Med. 2018 Mar 15;197(6):747-756. doi: 10.1164/rccm.201708-1559OC.

Abstract

Rationale: Sepsis causes brain dysfunction and neuroinflammation. It is unknown whether neuroinflammation in sepsis is initiated by dissemination of bacteria to the brain and sustained by persistent infection, or whether neuroinflammation is a sterile process resulting solely from circulating inflammatory mediators.

Objectives: To determine if gut bacteria translocate to the brain during sepsis, and are associated with neuroinflammation.

Methods: Murine sepsis was induced using cecal ligation and puncture, and sepsis survivor mice were compared with sham and unoperated control animals. Brain tissue of patients who died of sepsis was compared with patients who died of noninfectious causes. Bacterial taxa were characterized by 16S ribosomal RNA gene sequencing in both murine and human brain specimens; compared among sepsis and nonsepsis groups; and correlated with levels of S100A8, a marker of neuroinflammation using permutational multivariate ANOVA.

Measurements and main results: Viable gut-associated bacteria were enriched in the brains of mice 5 days after surviving abdominal sepsis (P < 0.01), and undetectable by 14 days. The community structure of brain-associated bacteria correlated with severity of neuroinflammation (P < 0.001). Furthermore, bacterial taxa detected in brains of humans who die of sepsis were distinct from those who died of noninfectious causes (P < 0.001) and correlated with S100A8/A9 expression (P < 0.05).

Conclusions: Although bacterial translocation is associated with acute neuroinflammation in murine sepsis, bacterial translocation did not result in chronic cerebral infection. Postmortem analysis of patients who die of sepsis suggests a role for bacteria in acute brain dysfunction in sepsis. Further work is needed to determine if modifying gut-associated bacterial communities modulates brain dysfunction after sepsis.

Keywords: S100A8; cecal ligation and puncture; inflammation; microbiome; sepsis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bacterial Translocation / physiology*
  • Brain / microbiology*
  • Cadaver
  • Disease Models, Animal
  • Encephalitis / etiology*
  • Gastrointestinal Microbiome / physiology*
  • Humans
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Sepsis / complications*
  • Severity of Illness Index