Direct Powering a Real Cardiac Pacemaker by Natural Energy of a Heartbeat

ACS Nano. 2019 Mar 26;13(3):2822-2830. doi: 10.1021/acsnano.8b08567. Epub 2019 Feb 20.

Abstract

Implantable medical devices are widely used for monitoring and treatment of severe diseases. In particular, an implantable cardiac pacemaker is the most effective therapeutic device for treating bradyrhythmia, however its surgical replacement is inevitable every 5-12 years due to the limited life of the built-in battery. Although several approaches of energy harvesting have been explored in this decade for powering cardiac pacemakers, the modern, commercial, and full-function pacemaker has never been powered effectively yet. Here, we report an integrated strategy for directly powering a modern and full-function cardiac pacemaker, which can pace the porcine heart in vivo by harvesting the natural energy of a heartbeat, without using any external energy storage element. The generator includes an elastic skeleton and two piezoelectric composites, which could generate a high-output current of 15 μA in vivo over state-of-the-art performance. This study makes an impressive step toward fabricating a self-powered cardiac pacemaker and resolving the power issue of implantable medical devices by piezoelectric harvesting technology.

Keywords: PMN-PT; batteryless pacemaker; cardiac kinetic energy; implantable harvester; medical device; piezoelectric energy generator; self-powered.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cells, Cultured
  • Electric Power Supplies*
  • Equipment Design
  • Heart / diagnostic imaging*
  • Heart Rate
  • Male
  • Optical Imaging
  • Pacemaker, Artificial*
  • Prostheses and Implants*
  • Rats
  • Swine