Cannabidiol Enhances the Passage of Lipid Nanocapsules across the Blood-Brain Barrier Both in Vitro and in Vivo

Mol Pharm. 2019 May 6;16(5):1999-2010. doi: 10.1021/acs.molpharmaceut.8b01344. Epub 2019 Mar 22.

Abstract

Diseases affecting the central nervous system (CNS) should be regarded as a major health challenge due to the current lack of effective treatments given the hindrance to brain drug delivery imposed by the blood-brain barrier (BBB). Since efficient brain drug delivery should not solely rely on passive targeting, active targeting of nanomedicines into the CNS is being explored. The present study is devoted to the development of lipid nanocapsules (LNCs) decorated with nonpsychotropic cannabinoids as pioneering nonimmunogenic brain-targeting molecules and to the evaluation of their brain-targeting ability both in vitro and in vivo. Noticeably, both the permeability experiments across the hCMEC/D3 cell-based in vitro BBB model and the biodistribution experiments in mice consistently demonstrated that the highest brain-targeting ability was achieved with the smallest-sized cannabinoid-decorated LNCs. Importantly, the enhancement in brain targeting achieved with the conjugation of cannabidiol to LNCs outperformed by 6-fold the enhancement observed for the G-Technology (the main brain active strategy that has already entered clinical trials for the treatment of CNS diseases). As the transport efficiency across the BBB certainly determines the efficacy of the treatments for brain disorders, small cannabinoid-decorated LNCs represent auspicious platforms for the design and development of novel therapies for CNS diseases.

Keywords: brain targeting; cannabinoids; in vitro BBB model; nanomedicine; permeability.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blood-Brain Barrier / drug effects*
  • Brain Diseases / drug therapy
  • Cannabidiol / chemistry
  • Cannabidiol / metabolism
  • Cannabidiol / pharmacology*
  • Capillary Permeability / drug effects
  • Cell Line
  • Cell Survival / drug effects
  • Drug Delivery Systems / methods*
  • Fluorescent Dyes / chemistry
  • Fluorescent Dyes / metabolism
  • Humans
  • Lipids / chemistry*
  • Male
  • Mice
  • Mice, Inbred ICR
  • Nanocapsules / chemistry*
  • Nanoconjugates / chemistry*
  • Nanomedicine / methods
  • Tissue Distribution

Substances

  • Fluorescent Dyes
  • Lipids
  • Nanocapsules
  • Nanoconjugates
  • Cannabidiol