On How the Dentate Gyrus Contributes to Memory Discrimination

Neuron. 2018 May 16;98(4):832-845.e5. doi: 10.1016/j.neuron.2018.04.018. Epub 2018 May 3.

Abstract

The dentate gyrus (DG) is crucial for behaviorally discriminating similar spatial memories, predicting that DG place cells change ("remap") their relative spatial tuning ("place fields") for memory discrimination. This prediction was never tested, although DG place cells remap across similar environments without memory tasks. We confirm this prior finding but find that DG place fields do not remap across spatial tasks that require DG-dependent memory discrimination. Instead of remapping, place-discriminating discharge is observed transiently among DG place cells, particularly when memory discrimination is most necessary. The DG network may signal memory discrimination by expressing distinctive sub-second network patterns of co-firing at memory discrimination sites. This involves increased coupling of discharge from place cells and interneurons, as was observed during successful, but not failed, behavioral expression of memory discrimination. Instead of remapping, these findings indicate that memory discrimination is signaled by sub-second patterns of correlated discharge within the dentate network.

Keywords: dentate gyrus; memory discrimination; pattern separation; place cells; remapping.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • CA1 Region, Hippocampal / cytology
  • CA1 Region, Hippocampal / physiology
  • CA3 Region, Hippocampal / cytology
  • CA3 Region, Hippocampal / physiology
  • Dentate Gyrus / cytology
  • Dentate Gyrus / physiology*
  • Discrimination, Psychological / physiology*
  • Electrodes, Implanted
  • Memory / physiology
  • Mice
  • Neural Inhibition
  • Place Cells / physiology*
  • Spatial Memory / physiology*
  • Time Factors