KCNK5 Regulating Potassium Efflux and Inducing Pyroptosis in Corneal Epithelial Cells Through TNFSF10-Mediated Autophagy in Dry Eye

Invest Ophthalmol Vis Sci. 2024 Jan 2;65(1):34. doi: 10.1167/iovs.65.1.34.

Abstract

Purpose: The purpose of this study was to elucidate the involvement of potassium two pore domain channel subfamily K member 5 (KCNK5)-mediated potassium efflux in the pathogenesis of dry eye and to unravel the underlying molecular mechanisms.

Methods: To induce experimental dry eye in adult wild-type C57BL/6 mice, scopolamine was administered via subcutaneous injection, and the mice were subjected to desiccating stress. To create an in vitro model of dry eye, desiccation stress was applied to the human corneal epithelial cell line (HCE-T). Intracellular potassium concentration was quantified using inductively coupled plasma mass spectrometry. Cellular death was assessed through lactate dehydrogenase assays. Gene expression profiling was conducted through both RNA sequencing and quantitative real-time PCR. Protein analysis was carried out through Western blotting and immunofluorescence staining. Assessment of the corneal epithelial defect area was conducted through fluorescein sodium staining. Tear secretion was quantified using the phenol red cotton thread method.

Results: Potassium efflux was observed to further facilitate corneal epithelial pyroptosis. KCNK5 exhibited upregulation in both in vivo and in vitro models of dry eye. The overexpression of KCNK5 was observed to induce potassium efflux and activate the NLR family pyrin domain containing 3 (NLRP3) inflammasome-mediated pyroptosis in vitro. Silencing KCNK5 effectively mitigated pyroptosis in dry eye. Additionally, the overexpression of KCNK5 results in the downregulation of TNF superfamily member 10 (TNFSF10) and subsequent impairment of autophagy. TNFSF10 supplementation could promote autophagy and mitigate pyroptosis in dry eye.

Conclusions: The upregulation of KCNK5 mediates TNFSF10 to impair autophagy and induce pyroptosis in dry eye. Consequently, targeting KCNK5 may represent a novel and promising approach to therapeutic intervention in the management of dry eye.

MeSH terms

  • Animals
  • Autophagy
  • Dry Eye Syndromes* / metabolism
  • Epithelial Cells
  • Humans
  • Mice
  • Mice, Inbred C57BL
  • Potassium Channels, Tandem Pore Domain* / metabolism
  • Pyroptosis
  • TNF-Related Apoptosis-Inducing Ligand* / metabolism

Substances

  • KCNK5 protein, human
  • Potassium Channels, Tandem Pore Domain
  • TNF-Related Apoptosis-Inducing Ligand
  • TNFSF10 protein, human